
Advanced Coordination Techniques
Experiments with TuCSoN and ReSpecT

Stefano Mariani Andrea Omicini
{s.mariani, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Faculté d’informatique – Université de Namur
Thursday, April 28th, 2016

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 1 / 223

Outline

1 Interaction & Coordination in Distributed Systems
On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 2 / 223

Interaction & Coordination in Distributed Systems

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 3 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 4 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

Issues in Concurrent / Distributed Systems

Concurrency / Parallelism

multiple independent activities / loci of control
active simultaneously
processes, threads, actors, active objects, agents, . . .

Distribution

activities running on different and heterogeneous execution contexts
(virtual machines, devices, . . .)

Social interaction

dependencies among activities
collective goals involving activities coordination / cooperation

Situated interaction

interaction with environmental resources (computational or physical)
interaction within the time-space fabric

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 5 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

(Non) Algorithmic Computation

What is a component in a distributed system?

A computational abstraction characterised by

an independent computational activity
I/O capabilities

⇒ Two orthogonal dimensions

computation
interaction

Beyond Turing Machines

Turing’s choice machines and unorganised machines [WG03]

Wegner’s Interaction Machines [GSW06]

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 6 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

Compositionality vs. Non-compositionality

Compositionality

Sequential composition P1;P2

behaviour(P1;P2) = behaviour(P1) + behaviour(P2)

Non-compositionality

Interactive composition P1 | P2

behaviour(P1 | P2) = behaviour(P1) + behaviour(P2) + interaction(P1,P2)

⇒ Interactive composition is more than the sum of its parts

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 7 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

Non-compositionality: Issues

Compositionality vs. formalisability

a formal model is required for stating any compositional property
however, formalisability does not require compositionality, and does not
imply predictability
partial formalisability may allow for proof of properties, and for partial
predictability

Emergent behaviours

fully-predictable / formalisable systems do not allow by definition for
emergent behaviours

Formalisability vs. expressiveness

Less / more formalisable systems are (respectively) more / less
expressive in terms of potential behaviours

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 8 / 223

Interaction & Coordination in Distributed Systems On the Interactive Nature of Distributed Systems

Basic Engineering Principles

Abstraction

problems should be represented / faced at the right level of abstraction
resulting abstractions should be expressive enough to capture the most
relevant problems
conceptual integrity

Locality & encapsulation

design abstractions should embody the solutions corresponding to the
domain entities they represent

Run-time vs. design-time abstractions

incremental change / evolution
on-line engineering [FG04]
(cognitive) self-organising systems [Omi12a]

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 9 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 10 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

What is a Coordination Model?

Coordination model as a glue

“A coordination model is the glue that binds separate activities
into an ensemble” [GC92]

Coordination model as an agent interaction framework

“A coordination model provides a framework in which the
interaction of active and independent entities called agents can
be expressed” [Cia96]

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 11 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Coordination: Sketching a Meta-model [Cia96]

The medium of coordination
“Fills” the interaction space

enables / promotes / governs the
admissible / desirable / required
interactions among the interacting
entities (coordinables)

according to coordination laws

enacted by the behaviour of
the medium
defining the semantics of
coordination coordinables

coordination

medium

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 12 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Requirements for a Coordination Model

What do we ask to a coordination model?

To provide high-level abstractions and suitably expressive mechanisms
for distributed system engineering

To intrinsically add properties to systems independently of
components

e.g. robustness, flexibility, control, intelligence, adaptiveness,
self-organisation, . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 13 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Classes of Coordination Models

Control-oriented vs. Data-oriented Models [PA98]

Control-oriented Focus on the acts of communication

Data-oriented Focus on the information exchanged during communication

Several surveys, no time enough here

Are these really classes?

actually, better to take this as a criterion to observe coordination
models, rather than to separate them

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 14 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Control-oriented Models

Which abstractions?

Producer-consumer pattern

Point-to-point communication

Coordinator as the ruler of the space of interactions

Coordination as configuration of topology

Which systems?

Fine-grained granularity

Fine-tuned control

Good for small-scale, closed systems

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 15 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

Data-oriented Models

Information-based design & interaction (thus, coordination)

Possible spatio-temporal uncoupling

Different sort of control over interacting components (governing vs.
commanding)

Examples

Gamma / chemical coordination
Linda & friends / tuple-based coordination

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 16 / 223

Interaction & Coordination in Distributed Systems On the Role and Nature of Coordination Models

An Evolutionary Pattern?

Paradigms of sequential programming

1 Imperative programming with “goto”

2 Structured programming (procedure-oriented)

3 Object-oriented programming (data-oriented)

Paradigms of coordination programming

1 Message-passing coordination

2 Control-oriented coordination

3 Data-oriented coordination

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 17 / 223

Tuple-based Coordination of Distributed Systems

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 18 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 19 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Linda [Gel85]: Main Features

tuples ordered collection of information chunks, possibly
heterogeneous in sort

generative communication until explicitly withdrawn, tuples live
independently w.r.t. their producers, and are equally
accessible to all the coordinables, but are bound to none

associative access tuples are accessed based on their content & structure,
rather than by name, address, or location

suspensive semantics coordination operations (e.g., out, in, rd) may be
suspended based on unavailability of matching tuples, and be
woken up when such tuples become available

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 20 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Linda: Associative Access

Synchronisation based on tuple content & structure

absence / presence of tuples with a given (partial) content / structure
determines the behaviour of the coordinables (then, of the system)
based on tuple templates & matching mechanism

⇒ Information-driven coordination

patterns of coordination based on data / information availability

Reification

making events become tuples
grouping classes of events with tuple syntax, and accessing them via
tuple templates

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 21 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Linda: Suspensive Semantics

in & rd primitives have a suspensive semantics

the coordination medium makes the primitive wait in case a matching
tuple is not found, and wakes it up when such a tuple is found
the coordinable invoking the suspensive primitive is expected to wait
for its successful completion

⇒ Twofold wait

in the coordination medium the operation is first (possibly)
suspended, then (possibly) served

in the coordinated entity the invocation may cause a wait-state in the
invoker ⇒ hypothesis on the internal behaviour of the
coordinable

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 22 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Dining Philos in Linda

Philosopher using chopstick pairs: chops(I,J)

philosopher(I,J) :-

think, % thinking

in(chops(I,J)), % waiting to eat

eat, % eating

out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Issues

+ fairness, no deadlock
+ trivial philosopher’s interaction protocol
– shared resources not handled properly (chops should be independent)
– starvation still possible (eating forever)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 23 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Dining Philos in Linda: Where is the Problem?

7 The behaviour of the coordination medium is fixed once and for all

⇒ coordination problems that fits it are solved satisfactorily, those that do
not fit are not

7 Introducing novel primitives, e.g., bulk primitives (e.g., in all,
rd all), is not a general-purpose solution

⇒ adding ad hoc primitives does not solve the problem once and for all

7 As a result, the coordination load is typically charged upon
coordination entities

⇒ this does not follow basic software engineering principles, like
encapsulation, locality, separation of concerns

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 24 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Dining Philos in Linda: Solution?

3 Making the behaviour of the coordination medium adaptable to the
coordination problem at hand

⇒ in principle, all coordination problems may fit some admissible
behaviour of the coordination medium

⇒ no need to either add new ad hoc primitives, or change the semantics
of the old ones

⇒ This way, coordination media could encapsulate solutions to
coordination problems

represented in terms of coordination policies
enacted in terms of coordinative behaviour (of the coordination media)

! What is needed is a way to define the behaviour of a coordination
medium

⇒ a general computational model for coordination media
⇒ along with a suitably expressive programming language to define their

behaviour

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 25 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Hybrid Coordination Models

In a sense, we need to add a control-driven layer to a data-oriented
coordination model

? Why not purely control driven, then?

! control-driven coordination does not fit information-driven contexts,
e.g., Web-based ones — quite obviously

! they also have difficulties in dealing with autonomy [DAdB05], a
fundamental feature of, e.g., multi-agent systems

⇒ We need hybrid coordination models

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 26 / 223

Tuple-based Coordination of Distributed Systems On Tuple-based Coordination Models

Towards Tuple Centres

What should be added to a tuple-based model to make it hybrid, and
how?

What should be left unchanged?

3 no new primitives
3 basic Linda primitives are preserved, both syntax and semantics
3 matching mechanism preserved, still depending on the communication

language of choice
3 multiple tuple spaces, flat name space

Which new features?

3 ability to define new coordinative behaviours embodying required
coordination policies

3 ability to associate coordinative behaviours to coordination events

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 27 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 28 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Tuple Centres

Definition

A tuple centre is a tuple space enhanced with a behaviour specification,
defining the behaviour of a tuple centre in response to coordination events
[OD01a]

The behaviour specification of a tuple centre

3 is expressed in terms of a reaction specification language, and
3 associates any tuple centre event to a (possibly empty) set of

computational activities, called reactions

A reaction specification language, thus

3 enables definition of reactions. . .
3 . . . and makes it possible to associate them to the events occurring in a

tuple centre

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 29 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Reactions

Each reaction can

3 access and modify the current tuple centre state — e.g., adding or
removing tuples

3 access the information related to the triggering event – e.g., the
performing process, the primitive invoked, the tuple involved, etc. –
which is made completely observable

3 invoke link primitives — coordination primitives whose target is another
(remote) tuple centre

⇒ As a result, the semantics of the traditional coordination primitives –
e.g., out, rd, in – is no longer constrained to be as simple as in the
Linda model

instead, it can be made as complex as required by the specific
application needs

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 30 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Tuple Centre Working Cycle I

The main cycle of a tuple centre works as follows

1 when a primitive invocation reaches a tuple centre, all the
corresponding reactions (if any) are triggered, and then executed
atomically and transactionally in a non-deterministic order

2 once all the reactions have been executed, the primitive is served in
the same way as in standard Linda

3 upon completion of the invocation, the corresponding reactions (if
any) are triggered, and then executed according to the
aforementioned semantic

4 once all the reactions have been executed, the main cycle of a tuple
centre may go on possibly serving another invocation

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 31 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Tuple Centre Working Cycle II

As a result, tuple centres exhibit a couple of fundamental features

Tuple spaces as “empty” tuple centres

An empty behaviour specification defaults the behaviour of a tuple centre
to that of a tuple space

Tuple centres still are tuple spaces

From the process’ perspective, the result of the invocation of a tuple
centre primitive is the sum of

the effects of the primitive itself

the effects of all the reactions it triggers

perceived altogether as a single-step transition of the tuple centre state

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 32 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Tuple Centre’s State vs. Process’ Perception

The observable behaviour of a tuple centre in response to a
communication event is still perceived by processes as a single-step
transition of the tuple-centre state

as in the case of tuple spaces
thanks to atomic and transactional semantic of reactions execution

Unlike a standard tuple space, the perceived transition of a tuple
centre state can be made as complex as needed

⇒ this enables a novel form of decoupling: the process’ view of a tuple
centre may be different from the actual state of the same tuple centre

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 33 / 223

Tuple-based Coordination of Distributed Systems Beyond Tuple Spaces: Tuple Centres

Tuple Centres & Hybrid Coordination

Tuple centres promote a form of hybrid coordination

aimed at preserving the advantages of data-driven models
while addressing their limitations in terms of control capabilities

3 On the one hand, a tuple centre is basically an information-driven
coordination medium, which is perceived as such by processes

3 On the other hand, a tuple centre also features some capabilities
which are typical of action-driven models, like

full observability of events
the ability to selectively react to events
the ability to program coordination rules by manipulating the
interaction space

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 34 / 223

Coordination with TuCSoN: Basics

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 35 / 223

Coordination with TuCSoN: Basics Model & Language

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 36 / 223

Coordination with TuCSoN: Basics Model & Language

Tuple Centres Spread over the Network (TuCSoN)

TuCSoN is a model for the coordination of distributed processes, as well
as of autonomous agents [OZ99]

References

main page http://tucson.unibo.it/

Bitbucket http://bitbucket.org/smariani/tucson/

FaceBook http://www.facebook.com/TuCSoNCoordinationTechnology

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 37 / 223

http://tucson.unibo.it/
http://bitbucket.org/smariani/tucson/
http://www.facebook.com/TuCSoNCoordinationTechnology

Coordination with TuCSoN: Basics Model & Language

Core Abstractions I

TuCSoN agents are the coordinables

ReSpecT tuple centres are the programmable coordination media
[OD01b]

TuCSoN nodes represent the basic topological abstraction, which
host the tuple centres

⇒ agents, tuple centres, and nodes have unique identities within a
TuCSoN system

Agents act on tuple centres by means of coordination operations,
built out of the TuCSoN coordination language, as defined by the
collection of TuCSoN coordination primitives

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 38 / 223

Coordination with TuCSoN: Basics Model & Language

Core Abstractions II

Agents may live anywhere on the network, and may interact with
tuple centres hosted by any reachable TuCSoN node

Agents can move independently of the device where they execute
[OZ98], while tuple centres’ mobility depends on their hosting device
moving abilities

System view

Roughly speaking, a TuCSoN system is a collection of (mobile) agents and
tuple centres, hosted on possibly mobile devices, coordinating in a
(distributed) set of nodes

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 39 / 223

Coordination with TuCSoN: Basics Model & Language

Nodes

Each node within a TuCSoN system is univocally identified by the
pair < NetworkId ,PortNo >, where

NetworkId is the IP number of the device hosting the node
PortNo is the TCP port number where the TuCSoN coordination
service listens to incoming requests

⇒ Correspondingly, the abstract syntax1 of TuCSoN nodes identifiers is

netid : portno

(localhost : 20504)

1Actually, this is also the concrete syntax used by TuCSoN to parse nodes’ IDs
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 40 / 223

Coordination with TuCSoN: Basics Model & Language

Tuple Centres

An admissible name for a tuple centre is any Prolog-like, first-order
logic ground term2 [Llo84]

Each tuple centre is uniquely identified by its admissible name
associated to the node identifier

⇒ Hence the TuCSoN full name of a tuple centre tname on a node
netid : portno is

tname @ netid : portno

(default @ localhost : 20504)

2Ground roughly means “no variables”
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 41 / 223

Coordination with TuCSoN: Basics Model & Language

Agents

An admissible name for an agent is any Prolog-like, first-order logic
ground term too

When it enters a TuCSoN system, an agent is assigned a universally
unique identifier (UUID)3

⇒ If an agent aname is assigned UUID uuid , its full name is

aname : uuid

(stefano : 4baad505-ad2f-4ac4-b30b-bc3705a2c87a)

3http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 42 / 223

http://docs.oracle.com/javase/7/docs/api/java/util/UUID.html

Coordination with TuCSoN: Basics Model & Language

Coordination Language

TuCSoN coordination operations are built out of coordination
primitives and of the communication languages:

the tuple language
the tuple template language

In TuCSoN, both the tuple and the tuple template languages are
logic-based, too

any first-order logic Prolog atom is an admissible TuCSoN tuple. . .
. . . and an admissible TuCSoN tuple template

⇒ the two languages coincide, thus

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 43 / 223

Coordination with TuCSoN: Basics Model & Language

Coordination Operations

Any TuCSoN coordination operation is invoked by a source agent on
a target tuple centre, which is in charge of its execution

invocation phase — the request of the agent reaches the tuple
centre, decorated with information about the invocation

completion phase — the response of the tuple centre goes back to
the agent, including information about operation
execution outcome

The abstract syntax4 of a coordination operation op invoked on a
target tuple centre tcid is

tcid ? op

tname @ netid : portno ? op

(default @ localhost : 20504 ? out(t(hi)))

4Actually, this is also the concrete syntax used by TuCSoN to parse coordination
operations, even inside ReSpecT reactions

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 44 / 223

Coordination with TuCSoN: Basics Model & Language

Coordination Primitives

The TuCSoN coordination language provides the following 9 coordination
primitives to build coordination operations:

out to put a tuple in the target tuple centre

rd, rdp to read a tuple matching a given tuple template in the target
tuple centre

in, inp to withdraw a tuple matching a given tuple template from
the target tuple centre

no, nop to check absence of tuples matching a given tuple template
in the target tuple centre

get to read all the tuples in the target tuple centre

set to overwrite the set of tuples in the target tuple centre

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 45 / 223

Coordination with TuCSoN: Basics Technology Overview

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 46 / 223

Coordination with TuCSoN: Basics Technology Overview

Defaults I

Many TuCSoN nodes can run on the same networked device, as long
as each one is listening on a different TCP port

The default TCP port number of TuCSoN is 20504

⇒ so, agents can invoke operations of the form

tname @ netid ? op

(default @ localhost ? out(t(hi)))

Any other port can be used for a TuCSoN node (we will see how to
change it in a few slides)

The default tuple centre of a TuCSoN node is named default

⇒ so, agents can invoke operations of the form

@ netid : portno ? op

(@ localhost : 20504 ? out(t(hi)))

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 47 / 223

Coordination with TuCSoN: Basics Technology Overview

Defaults II

By combining defaults, the following invocations are also admissible
for any TuCSoN agent running on a device netid :

3 : portno ? op

invoking operation op on the default tuple centre of node
netid : portno

3 tname ? op

invoking operation op on the tname tuple centre of default node
netid : 20504

3 op

invoking operation op on the default tuple centre of default node
netid : 20504

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 48 / 223

Coordination with TuCSoN: Basics Technology Overview

Global vs. Local Coordination Space

TuCSoN global coordination space is defined by the collection of all
the tuple centres available on the network, identified by their full
name

⇒ a TuCSoN agent running on any networked device has the whole
TuCSoN global coordination space available for its coordination
operations through invocations of the form

tname @ netid : portno ? op

TuCSoN local coordination space is defined by the collection of all
the tuple centres available on all the TuCSoN nodes hosted by the
local device — let netid be its network address

⇒ a TuCSoN agent running on the same device (netid) can access the
local coordination space by invoking operations of the form

tname : portno ? op

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 49 / 223

Coordination with TuCSoN: Basics Technology Overview

Agent Coordination Context I

An Agent Coordination Context (ACC) [Omi02] is a runtime and stateful
interface

enabling an agent to execute coordination operations on the tuple
centres of a specific organisation– -e.g., TuCSoN system

constraining its admissible interactions

modelling RBAC in TuCSoN [ORV05a] — more on this in slide 192

Role of ACC

Along with tuple centres, ACC are the run-time abstraction that allows
TuCSoN to uniformly handle coordination, organisation, and security issues

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 50 / 223

Coordination with TuCSoN: Basics Technology Overview

Agent Coordination Context II

OrdinarySynchACC enables interaction with the ordinary tuple space
supporting a synchronous invocation semantics: whichever
the coordination operation invoked (either suspensive or
predicative), the agent blocks waiting for its completion

SpecificationAsynchACC enables interaction with the (ReSpecT)
specification tuple space supporting an asynchronous
invocation semantics: whichever the coordination operation
invoked (either suspensive or predicative), the agent is
asynchronously notified upon completion

.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 51 / 223

Coordination with TuCSoN: Basics Technology Overview

Overview of TuCSoN ACCs

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 52 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN Middleware Overview

TuCSoN is a Java-based middleware (Java 7 is enough)

TuCSoN is also Prolog-based5: it is based on the tuProlog [DOR01]
Java-based technology for

first-order logic tuples
primitives & identifiers
ReSpecT specification language & virtual machine

TuCSoN middleware provides:
Java API for using TuCSoN coordination services from Java programs

package alice.tucson.api.* (mostly)

Prolog API for using TuCSoN coordination services from tuProlog
programs

5Last digits in TuCSoN version number (TuCSoN-1.12.0.0301) are for the tuProlog
version, hence tuProlog version 3.0.1 atm

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 53 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN Service

A TuCSoN node can be started from a command prompt with:

java -cp tucson.jar:2p.jar alice.tucson.service.TucsonNodeService

[-port portno]

The node is in charge of

listening to incoming invocations of coordination operations
dispatching them to the target tuple centre
returning the operations completion to the source agent

Let’s try!

1 Open a console, position yourself into the folder where tucson and 2p jars
are, then type the command above — on Windows, replace “:” with “;”

2 Try to launch another TuCSoN node on a different portno

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 54 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN CLI I

The Command Line Interpreter is a shell interface for humans
java -cp tucson.jar:2p.jar

alice.tucson.service.tools.CommandLineInterpreter

[-netid netid] [-port portno] [-aid CLIname]

Let’s try!

In the console, type the command above giving the same [-port portno]

given for TuCSoN installation — on Windows, replace “:” with “;”

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 55 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN CLI II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 56 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN CLI III

Let’s try!

1 Try out coordination operations

2 Try to suspend the CLI. . .

3 . . . and to resume it =)

4 Try to access each other TuCSoN nodes tuple centres — the global
coordination space

5 Try to spot invocation and completion phase of operations — look at
TuCSoN node console log

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 57 / 223

Coordination with TuCSoN: Basics Technology Overview

TuCSoN Inspector

GUI tool to monitor the TuCSoN coordination space & ReSpecT VM

to launch the Inspector

java -cp tucson.jar:2p.jar alice.tucson.introspection.tools.InspectorGUI

available options are (also available from the GUI)
-aid — the name to assign to the inspector

-netid — the IP address where the TuCSoN node to inspect is
reachable. . .

-portno — . . . and its TCP listening port. . .
-tcname — . . . and the name of the tuple centre to monitor

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 58 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector I

Using the Inspector Tool I

If you launched it without specifying the full name of the target tuple
centre to inspect, do it from in the GUI

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 59 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector II

Using the Inspector Tool II

If you launched it giving the full name of the target tuple centre to
inspect, choose what to inspect

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 60 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector III

Monitoring of the coordination space is available through the Sets tab:

Sets tab

Tuple Space — the ordinary tuples space state

Specification Space — the (ReSpecT) specification tuples space state

Pending Ops — the pending TuCSoN operations set, that is, the set of
the operations already issued but currently suspended
(waiting for completion)

ReSpecT Reactions — the triggered (ReSpecT) reactions set, that is, the
set of those specification tuples triggered by the TuCSoN
operations issued

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 61 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector IV

Tuple Space view

Proactively observe the space state, thus getting any change of state,
or reactively do so, thus getting updates only when requested

Filter displayed tuples according to a given template — Filter tab

Log (filtered) observations on a given log file — Log tab

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 62 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector V

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 63 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector VI

Specification Space view

Load a ReSpecT specification from a file. . .

. . . Edit & Set it to the current tuple centre

Get the ReSpecT specification from the current tuple centre. . .

. . . Save it to a given file (or to the default one named default.rsp)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 64 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector VII

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 65 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector VIII

Pending Ops view

Proactively or reactively observe pending TuCSoN operations

Filter displayed TuCSoN operations according to a given template —
Filter tab

Log (filtered) observations on a given log file — Log tab

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 66 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector IX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 67 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector X

ReSpecT Reactions view

In the ReSpecT Reactions view you are notified on the outcome of any
ReSpecT reaction triggered in the observed tuple centre, and can log such
notifications on a given log file

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 68 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector XI

Interaction with the ReSpecT VM is available through the StepMode tab:

StepMode tab

The tuple centre working cycle is paused

No further processing of incoming events, pending queries, triggering
reactions is done

ReSpecT VM performs transitions between its states only upon
pressing of the Next Step button

! one ReSpecT event is processed at each step

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 69 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector XII

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 70 / 223

Coordination with TuCSoN: Basics Technology Overview

Using TuCSoN Inspector XIII

The radio buttons under the Next Step button let the inspector
choose which point of view to keep while inspecting the tuple centre:

while adopting the tuple centre standpoint, all the Inspector views are
updated at each state transition — e.g., in the middle of a reaction
execution

while adopting the agents standpoint, Inspector views are updated only
when a complete VM cycle has been done — that is, from “idle” state
back into it

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 71 / 223

Coordination with TuCSoN: Basics Core API Overview

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 72 / 223

Coordination with TuCSoN: Basics Core API Overview

Use TuCSoN as a Library

To enable a Java application to use the TuCSoN technology:

1 build a TucsonAgentId to be identified by the TuCSoN system

2 get a TuCSoN ACC to enable interaction with the TuCSoN system

3 define the tuple centre target of your coordination operations

4 build a tuple using the communication language

5 perform the coordination operation using a coordination primitive

6 check requested operation success

7 get requested operation result

Let’s try!

Launch Java class HelloWorld in package alice.tucson.examples.helloWorld

within TuCSoN distribution and check out code comments

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 73 / 223

Coordination with TuCSoN: Basics Core API Overview

Use TuCSoN as a Framework

To create a TuCSoN agent, do the following:

1 extend alice.tucson.api.TucsonAgent base class

2 choose one of the given constructors

3 override the main() method with your agent business logic

4 get your ACC from the super-class

5 do what you want to do following steps 3− 7 from previous slide

6 instantiate your agent and start its execution cycle (main()) by using
method go()

Let’s try!

Launch Java class HelloWorldAgent in package
alice.tucson.examples.helloWorld within TuCSoN distribution and check
out code comments

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 74 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough I

Package alice.tucson.api

Most of the API is made available through package alice.tucson.api

TucsonAgentId — exposes methods to build a TuCSoN agent ID, and
to access its fields. Required to obtain an ACC
getAgentName(): String — to get the local agent name

TucsonMetaACC — provides TuCSoN agents with a meta-ACC,
necessary to acquire an ACC, which in turn is mandatory to interact
with a TuCSoN tuple centre
getAdminContext(TucsonAgentId, String, int, String, String): AdminACC —

to get an administrator ACC from the (specified) TuCSoN node
getNegotiationContext(TucsonAgentId, String, int): NegotiationACC — to get

a negotiation ACC from the (specified) TuCSoN node

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 75 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough II

TucsonTupleCentreId — exposes methods to build a TuCSoN tuple
centre ID, and to access its fields. Required to perform TuCSoN
operations on the ACC
getName(): String — to get the tuple centre local name

getNode(): String — to get the tuple centre host’s (TuCSoN node) IP number

getPort(): int — to get the tuple centre host’s (TuCSoN node) TCP port number

ITucsonOperation — exposes methods to access the result of a
TuCSoN operation
isResultSuccess(): boolean — to check operation success

getLogicTupleResult(): LogicTuple — to get operation result

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 76 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough III

AbstractTucsonAgent — base abstract class for user-defined TuCSoN
agents. Automatically builds the TucsonAgentId and gets an the
EnhancedACC

main(): void — to be overridden with the agent’s business logic
getContext(): EnhancedACC — to get the ACC for the user-defined agent

go(): void — to start main execution of the user-defined agent

AbstractSpawnActivity — base abstract class for user-defined
activities to be spawned by a spawn operation — more on this in
slide 176. Provides a simplified syntax for TuCSoN operation
invocations
doActivity(): void — to override with the spawned activity’s business logic
out(LogicTuple): LogicTuple — out TuCSoN operation bound to local tuple centre

.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 77 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough IV

Tucson2PLibrary — allows tuProlog agents to access the TuCSoN
platform by exposing methods to manage ACC, and to invoke
TuCSoN operations
acquire acc 1(Struct): boolean — to get an ACC for the tuProlog agent

out 2(Term, Term): boolean — out TuCSoN operation

.

Furthermore. . .

Package alice.tucson.api contains also all the ACC provided by the
TuCSoN platform, among which EnhancedACC — those depicted in slide 52

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 78 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough V

Package alice.logictuple

The part of TuCSoN API concerned with managing tuples is made
available through package alice.logictuple

LogicTuple — exposes methods to build a TuCSoN tuple/template
and to get its arguments
parse(String): LogicTuple — to encode a given string into a TuCSoN

tuple/template
getName(): String — to get the functor name of the tuple
getArg(int): TupleArgument — to get the tuple argument at given position

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 79 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough VI

TupleArgument — represents TuCSoN tuples arguments (tuProlog
terms), and provides the means to access them
parse(String): TupleArgument — to encode the given string into a tuProlog tuple

argument

getArg(int): TupleArgument — to get the tuple argument at given position

isVar(): boolean — to test if the tuple argument is a tuProlog Var

intValue(): int — to get the int value of the tuple argument — if admissible

.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 80 / 223

Coordination with TuCSoN: Basics Core API Overview

API Walkthrough VII

Package alice.tucson.service

The API to programatically boot & kill a TuCSoN service is provided by
class TucsonNodeService in package alice.tucson.service

constructors to set-up the TuCSoN service

methods to install, shutdown, and test installation of the TuCSoN
service
install(): void

shutdown(): void

isInstalled(String, int, int): boolean

entry point to launch a TuCSoN node from the command line

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 81 / 223

Coordination with TuCSoN: Basics Core API Overview

The API in Practice

Package alice.tucson.examples.*

.helloWorld package

.messagePassing package

.rpc package

.masterWorkers package

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 82 / 223

Coordination with ReSpecT: Basics

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 83 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 84 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Meta-Coordination Language

TuCSoN meta-coordination operations are built out of
meta-coordination primitives and of ReSpecT specification languages

the specification language
the specification template language

In TuCSoN, both the specification and the specification template
languages are logic-based, and defined by ReSpecT

any ReSpecT reaction is an admissible TuCSoN specification tuple. . .
. . . and an admissible TuCSoN specification template

⇒ the two languages coincide

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 85 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Meta-Coordination Operations

Any TuCSoN meta-coordination operation is invoked by a source
agent on a target tuple centre, which is in charge of its execution

invocation phase — the request of the agent reaches the tuple
centre, decorated with information about the invocation

completion phase — the response of the tuple centre goes back to
the agent, including information about operation
execution outcome

The abstract syntax of a meta-coordination operation op s invoked
on a target tuple centre tcid is

tcid ? op s

tname @ netid : portno ? op s

default @ localhost : 20504 ? out s(E ,G ,R)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 86 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Meta-Coordination Primitives

The TuCSoN meta-coordination language provides the following
meta-coordination primitives to build meta-coordination operations:

out s to put a specification tuple in the specification space of the
target tuple centre (tc)

rd s, rdp s to read a specification tuple matching a given specification
template from the target tc

in s, inp s to withdraw a specification tuple matching a given
specification template from the target tc

no s, nop s to check absence of a specification tuple matching a given
specification template in the target tc

get s to read all the specification tuples in the target tc

set s to overwrite the set of specification tuples in the target tc

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 87 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Reaction Specification Tuples (ReSpecT)

As a behaviour specification language, ReSpecT

3 enables definition of computations within a tuple centre (reactions)

! sequences of logic predicates and functions, and ReSpecT primitives,
executing (as a whole) atomically and transactionally, with a global
success/failure semantics

3 enables association of reactions to events occurring in a tuple centre

⇒ given a ReSpecT event Ev , a specification tuple reaction(E ,G ,R)

associates a reaction Rθ to Ev if and only if θ = mgu(E,Ev)6 and
guard predicate G evaluates to true [Omi07]

ReSpecT twofold interpretation

So, ReSpecT has both a declarative and a procedural part

6Where mgu is the most general unifier, as defined in logic programming
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 88 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Reactions Semantics

3 A ReSpecT reaction succeeds if and only if all its reaction goals
succeed, and fails otherwise

3 Each reaction is executed with a transactional semantics

⇒ hence, a failed reaction has no effect on the state of the tuple centre

3 Sequences of reactions are executed sequentially, according to a
non-deterministic order,

3 (Sequences of) reactions are executed atomically, that is, before
serving other ReSpecT events

⇒ thus, agents are transparent both to reactions chaining, and to multiple
reactions triggering for the same event

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 89 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

ReSpecT VM Execution Cycle I

Whenever the invocation of a primitive by either an agent or a tuple centre
is performed

Invocation
1 an (admissible) ReSpecT event is generated and. . .

2 . . . reaches its (the primitive) target tuple centre. . .

3 . . . where it is orderly inserted in a sort of input queue (InQ)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 90 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

ReSpecT VM Execution Cycle II

When the tuple centre is idle, that is, no reaction is executing

Triggering

1 the first event ε in InQ, according to a FIFO policy, is moved to the
multiset Op of the pending requests

2 consequently, reactions to the invocation phase of ε are triggered by
adding them to the multiset Re of the triggered reactions

3 then, those reactions whose guard predicates evaluate to true are
scheduled for execution, while others are removed from Re

4 finally, reactions still in Re are executed — sequentially,
non-deterministic order

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 91 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

ReSpecT VM Execution Cycle III

Chaining & linking

Each reaction may trigger

further reactions, orderly added to Re

output events, representing link invocations, which are
1 added to the multiset Out of the outgoing events
2 then moved to the output queue (OutQ) of the tuple centre — if and

only if reaction execution is successful

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 92 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

ReSpecT VM Execution Cycle IV

Completion

Only when Re is empty

1 pending requests in Op are (possibly) executed

2 operation/link completions are sent back to invokers

[!] Further reactions may be raised accordingly, associated to the
completion phase of the original invocation, and executed with the same

semantics specified above for the invocation phase.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 93 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Familiarise with ReSpecT I

Let’s try!

1 Launch a TuCSoN node on default port

2 Launch TuCSoN Inspector tool — that is, class InspectorGUI in
package alice.tucson.introspection.tools

3 Inspect the bagoftask tuple centre on the node

4 Activate “Step Mode” in the “StepMode” tab

5 Launch class BagOfTaskTest in package
alice.tucson.examples.respect.bagOfTask

6 Click “Next Step” on the Inspector to proceed through ReSpecT
VM’s execution cycle

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 94 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Malleability of ReSpecT Tuple Centres

The behaviour of a ReSpecT tuple centre is thus defined by the
ReSpecT tuples in the specification space

3 and it can be adapted by changing its ReSpecT specification at
run-time

⇒ ReSpecT tuple centres are thus malleable

3 by engineers, via TuCSoN tools — CLI & Inspector
3 by processes, via in s & out s primitives

in & out for the tuple space; in s & out s for the specification space
through either an agent coordination primitive, or another tuple centre
link operation

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 95 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Familiarise with ReSpecT II

Let’s try!

Look into the code of the Master class in package
alice.tucson.examples.respect.bagOfTask to see

3 usage of meta-coordination operations (therefore, primitives) at
run-time

3 structure of ReSpecT specification tuples

If you wish, change / add / remove invocations and see what happens
:)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 96 / 223

Coordination with ReSpecT: Basics Model & Virtual Machine

Linkability of ReSpecT Tuple Centres

Every tuple centre coordination primitive is also a ReSpecT primitive
for reaction goals (“internal”), and a primitive for linking, too

3 all primitives could be executed within a ReSpecT reaction

as either an internal primitive on the same tuple centre
or as a link primitive invoked upon another tuple centre

3 linking primitives are asynchronous — as agent ones

⇒ so they do not affect the transactional semantics of reactions

3 reactions can handle both primitive invocations & completions

ReSpecT tuple centres are linkable

by using tuple centre identifiers within ReSpecT reactions. . .
. . . any ReSpecT reaction can invoke any coordination primitive upon
any tuple centre in the network7

Hold on

Examples showcasing ReSpecT linkability feature are available later on :)

7The TuCSoN infrastructure is used for distributing ReSpecT tuple centres
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 97 / 223

Coordination with ReSpecT: Basics Language Overview

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 98 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Basics

ReSpecT tuple centres adopt logic tuples for both ordinary tuples and
specification tuples

Ordinary tuples are simple first-order logic (FOL) facts, written with a
Prolog syntax

Specification tuples are logic tuples of the form reaction(E,G,R)

3 if event Ev occurs in the tuple centre
3 if Ev matches event descriptor E such that θ = mgu(E,Ev)
3 if guard G evaluates to true

⇒ reaction Rθ is triggered for execution

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 99 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Behaviour Specification

Reference example

We use table.rsp ReSpecT specification in package
alice.tucson.examples.diningPhilos as our running example to back up
description of the ReSpecT language following in next slides

〈Specification〉 ::= {〈SpecificationTuple〉 .}
〈SpecificationTuple〉 ::= reaction(〈Event〉 , 〈Guard〉 , 〈ReactionBody〉)

〈Guard〉 ::= 〈GuardPredicate〉 | (〈GuardPredicate〉 {, 〈GuardPredicate〉})
〈ReactionBody〉 ::= 〈ReactionGoal〉 | (〈ReactionGoal〉 {, 〈ReactionGoal〉})

A behaviour specification 〈Specification〉 is a logic theory of FOL
tuples reaction/3

A specification tuple contains an event descriptor 〈Event〉, a guard
〈Guard〉, and a sequence 〈ReactionBody〉 of 〈ReactionGoal〉s

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 100 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Event Descriptor

〈Event〉 ::= 〈Predicate〉 (〈Tuple〉) | . . .

The simplest event descriptor 〈Event〉 is the invocation of a primitive
〈Predicate〉 (〈Tuple〉)
An event descriptor 〈Event〉 works as a event template for matching
with admissible events

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 101 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Admissible Events

〈TCEvent〉 ::= 〈OpEvent〉 | . . .
〈OpEvent〉 ::= 〈OpStartCause〉 , 〈OpEventCause〉 , 〈OpResult〉

〈OpStartCause〉 ::= 〈CoordOp〉 , 〈AgentId〉 , 〈TCId〉
〈OpEventCause〉 ::= 〈OpStartCause〉 | 〈LinkOp〉 , 〈TCId〉 , 〈TCId〉

〈OpResult〉 ::= 〈Tuple〉 , . . .

A ReSpecT admissible event includes its prime cause 〈StartCause〉, its direct cause

〈EventCause〉, and the 〈Result〉 of the tuple centre activity

prime and direct cause may coincide — such as when a process invocation reaches
its target tuple centre
or, they might be different — such as when a link primitive is invoked by a tuple
centre reacting to a process’ primitive invocation upon another tuple centre
the result is undefined in the invocation stage: it is defined in the completion stage

A reaction(E,G,R) and an admissible event ε match if E unifies with the
〈CoordOp〉 | 〈LinkOp〉 part of ε. 〈OpEventCause〉

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 102 / 223

Coordination with ReSpecT: Basics Language Overview

Event Model vs. Event Representation

Notice

Understanding the difference between admissible events 〈TCEvent〉 and
event descriptors 〈Event〉 is essential to understand the main issues of
pervasive systems

admissible events are how we capture and model relevant events: essentially, our
ontology for events

event descriptors are how we write about events: essentially, our language for
events

Role of Coordination Media

The ReSpecT VM is where the two things clash, and is exactly based on
that: it’s how we capture and observe events, and how we react to them

! this is an essential point in any technology dealing with situated
computations!

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 103 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Guards

〈Guard〉 ::= 〈GuardPredicate〉 |
(〈GuardPredicate〉 {, 〈GuardPredicate〉})

〈GuardPredicate〉 ::= request | response | success | failure
endo | exo | intra | inter
from_agent | to_agent | from_tc | to_tc | . . .

A triggered reaction is actually executed only if its guard evaluates to true

All guard predicates are ground ones

Guard predicates concern properties of the triggering event, so they enable
fine-grained selection of events

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 104 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Reactions Body I

〈ReactionGoal〉 ::= 〈Predicate〉 (〈Tuple〉) |
〈TupleCentre〉 ? 〈Predicate〉 (〈Tuple〉) |
〈ObservationPredicate〉 (〈Tuple〉) |
〈ComputationGoal〉 | (〈ReactionGoal〉 , 〈ReactionGoal〉) |
. . .

〈Predicate〉 ::= 〈StatePredicate〉 | 〈ForgePredicate〉
〈StatePredicate〉 ::= 〈BasicPredicate〉 | 〈PredicativePredicate〉 | . . .
〈BasicPredicate〉 ::= 〈GetterPredicate〉 | 〈SetterPredicate〉
〈GetterPredicate〉 ::= in | rd | no
〈SetterPredicate〉 ::= out

〈PredicativePredicate〉 ::= 〈GetterPredicate〉p
〈ForgePredicate〉 ::= 〈BasicPredicate〉_s | 〈PredicativePredicate〉_s | . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 105 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Reactions Body II

A reaction goal is either a primitive invocation – possibly, a link –, a
predicate recovering properties of the event, or some logic-based
computation

! Sequences of reaction goals are executed atomically and
transactionally, with an overall success / failure semantics

Tuple centre predicates are uniformly used for agent invocations,
internal operations, and link invocations

Similar predicates are used for changing the specification state

pred s invocations affect the specification state, and can be used
within reactions, also as links

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 106 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Observation Predicates I

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= predicate | tuple | source | target | . . .

event & start refer to direct and prime cause, respectively

current refers to what is currently happening, whenever this means
something useful — e.g., current predicate is not so useful =)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 107 / 223

Coordination with ReSpecT: Basics Language Overview

ReSpecT Syntax: Observation Predicates II

Any combination of the following is admissible in ReSpecT

〈EventView〉 — allow to inspect the events chain triggering the executing
reaction:

current — access the ReSpecT event currently under processing
event — access the ReSpecT event which is the direct cause

of the event triggering the reaction
start — access the ReSpecT event which is the prime cause

of the event triggering the reaction

〈EventInformation〉 — allow to inspect all the data ReSpecT events make
observable:

predicate — the ReSpecT primitive causing the event
tuple — the logic tuple argument of the predicate

source — who performed the predicate

target — who is directed to the predicate

time — when the predicate was issued

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 108 / 223

Coordination with ReSpecT: Basics Language Overview

Usage Example: Dining Philos I

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

Results

+ fairness, no deadlock

+ trivial philosopher’s interaction protocol

? shared resources handled properly?

? starvation still possible?

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 109 / 223

Coordination with ReSpecT: Basics Language Overview

Usage Example: Dining Philos II

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)),

out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)),

out(chops(C1,C)))).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 110 / 223

Coordination with ReSpecT: Basics Language Overview

Usage Example: Dining Philos III

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

:(starvation still possible

Keep starvation in mind. . .

. . . later on we will fix the issue, using ReSpecT :)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 111 / 223

Coordination with ReSpecT: Basics Core API Overview

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 112 / 223

Coordination with ReSpecT: Basics Core API Overview

TuCSoN API for ReSpecT

Uniform w.r.t. TuCSoN API to access the ordinary tuple space:

1 build a TucsonAgentId

2 get a TuCSoN ACC enabling access to ReSpecT specification space
3 define the tuple centre target of your meta-coordination operations
4 build a specification tuple using the meta-communication language

LogicTuple event = LogicTuple.parse("out(t(X))");

LogicTuple guards = LogicTuple.parse("(completion, success)");

LogicTuple reaction = LogicTuple.parse("(in(t(X)),

out(tt(X)))");

5 perform the meta-coordination operation using a meta-coordination
primitive

ITucsonOperation op = acc.out s(tcid, event, guards, reaction,
null);

6 check requested operation success
7 get requested operation result

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 113 / 223

Coordination with ReSpecT: Basics Core API Overview

ReSpecT API

Full ReSpecT API

Class Respect2PLibrary in package alice.respect.api implements all
predicates available within ReSpecT reactions, including observation
predicates, and also guards

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 114 / 223

Coordination with ReSpecT: Basics Core API Overview

API Examples

Let’s try!

Check out examples in package alice.tucson.examples.*

1 .respect.bagOfTask

2 .diningPhilos

3 .distributedDiningPhilos — linking primitives here

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 115 / 223

Tuple-based Coordination of Situated Systems

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 116 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 117 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Situatedness in the Spatio-Temporal Fabric I

What is Situatedness?

Situatedness is essentially the property of systems of being immersed
in their environment

⇒ That is, of being capable to perceive and produce environment
change, by suitably dealing with environment events

Mobile, adaptive, and pervasive computing systems have emphasised
the key role of situatedness for nowadays computational systems
[ZCF+11]

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 118 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Situatedness in the Spatio-Temporal Fabric II

Situatedness of computational systems nowadays requires at least
awareness of the spatio-temporal fabric

⇒ that is, any non-trivial system needs to know where it is working, and
when, in order to effectively perform its function

In its most general acceptation, then, any environment for a
computational systems is first of all made of space and time

Space & time vs. coordination

Why, and to which extent, is this a coordination issue?

Why, and to which extent, is this a tuple-based coordination issue?

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 119 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Dining Philos in ReSpecT: How to Fix Starvation?

! The problem is time: no one keeps track of time here, and starvation
is a matter of time

? How can we handle time here? Is synchronisation not enough for the
purpose?

7 Of course not: to avoid problems like starvation, we need the ability
of defining time-dependent coordination policies

What is the solution?

⇒ In order to define time-dependent coordination policies, a time-aware
coordination medium is needed

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 120 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Time-aware Coordination Media I

A time-aware coordination medium should satisfy the following
requirements [ORV07]:

1 Time has to be an integral part of the ontology of a coordination
medium

2 (Physical) time has to be explicitly embedded into the coordination
medium working cycle

3 A coordination medium should allow coordination policies to talk
about time

4 A coordination medium should be able to capture time events, and to
react appropriately

5 A coordination medium should allow coordination policies to be
changed over time

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 121 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Time-aware Coordination Media II

Physical time in the medium ontology & working cycle (reqs. 1, 2)
1 Time has to be an integral part of the ontology of a coordination medium

2 (Physical) time has to be explicitly embedded into the coordination medium working cycle

3 ReSpecT admissible event model is extended to include time. For
instance, in the case of 〈OpEvent〉:

〈OpStartCause〉 ::= 〈CoordOp〉 , 〈AgentId〉 , 〈TCId〉 , 〈Time〉
〈OpEventCause〉 ::= 〈OpStartCause〉 |

〈LinkOp〉 , 〈TCId〉 , 〈TCId〉 , 〈Time〉

Since every ReSpecT VM executes on a sequential machine, making
an expression of physical time available. . .

⇒ . . . at every transition of the ReSpecT VM, physical time is always
available to any ReSpecT computation

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 122 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Time-aware Coordination Media III

Coordination policies: talking about time (req. 3)
3 A coordination medium should allow coordination policies to talk about time

3 ReSpecT observation predicates are extended with time:

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= . . . | time | . . .

3 Two ReSpecT guard predicates are introduced:

〈GuardPredicate〉 ::= . . . | before(〈Time〉) | after(〈Time〉) | . . .

along with the obvious alias
between(〈Time〉 , 〈Time〉)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 123 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Time-aware Coordination Media IV

Capturing time events (req. 4)
4 A coordination medium should be able to capture time events, and to react appropriately

3 The ReSpecT admissible event model is extended to include time
events:

〈TCEvent〉 ::= 〈OpEvent〉 | 〈TEvent〉 | . . .
〈TEvent〉 ::= 〈TStartCause〉 , 〈TEventCause〉 , 〈TResult〉 , 〈Time〉

〈TStartCause〉 ::= 〈TOp〉 ,time, 〈TCId〉
〈TEventCause〉 ::= 〈TStartCause〉

〈TOp〉 ::= time(〈Time〉)
〈TResult〉 ::= 〈TOp〉 , . . .

3 Correspondingly, the ReSpecT event descriptor is extended, too:

〈Event〉 ::= 〈Predicate〉 (〈Tuple〉) | time(〈Time〉) | . . .

making it possible to specify reactions to time events:

reaction(time(@Time), Guard, Body).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 124 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Time-aware Coordination Media V

Changing coordination policies over time (req. 5)
5 A coordination medium should allow coordination policies to be changed over time

3 It is enough to exploit malleabilty of ReSpecT tuple centres

exploiting the same 〈ForgePredicate〉s that can be used for dynamically
change tuple centre behaviour at run time
such as in_s, out_s, . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 125 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Timed Dining Philosophers: Philosopher

philosopher(I,J) :-

think, % thinking

table ? in(chops(I,J)), % waiting to eat

eat, % eating

table ? out(chops(I,J)), % waiting to think

!, philosopher(I,J).

With respect to Dining Philosopher’s protocol. . .

. . . this is left unchanged — and this is very convenient!

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 126 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Timed Dining Philos: table ReSpecT Code

reaction(out(chops(C1,C2)), (operation, completion), (% (1)

in(chops(C1,C2)))).

reaction(out(chops(C1,C2)), (operation, completion), (% (1’)

in(used(C1,C2,_)), out(chop(C1)), out(chop(C2)))).

reaction(in(chops(C1,C2)), (operation, invocation), (% (2)

out(required(C1,C2)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (3)

in(required(C1,C2)))).

reaction(out(required(C1,C2)), internal, (% (4)

in(chop(C1)), in(chop(C2)), out(chops(C1,C2)))).

reaction(out(chop(C)), internal, (% (5)

rd(required(C,C2)), in(chop(C)), in(chop(C2)), out(chops(C,C2)))).

reaction(out(chop(C)), internal, (% (5’)

rd(required(C1,C)), in(chop(C1)), in(chop(C)), out(chops(C1,C)))).

reaction(in(chops(C1,C2)), (operation, completion), (% (6)

current_time(T), rd(max eating time(Max)), T1 is T + Max,

out(used(C1,C2,T)),

out_s(time(T1),(in(used(C1,C2,T)), out(chop(C1)), out(chop(C2)))))).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 127 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Timed Dining Philosophers in ReSpecT: Results

Results

protocol no deadlock

protocol fairness

protocol trivial philosopher’s interaction protocol

tuple centre shared resources handled properly

tuple centre no starvation 3

Let’s try!

Checkout example TDiningPhilosophersTest in package
alice.tucson.examples.timedDiningPhilos

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 128 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

What About Coordination & Space?

The availability of a plethora of mobile devices is pushing forward the
needs for space-awareness of computations and systems

often essential to establish which tasks to perform, which goals to
achieve, and how

More generally, spatial issues are fundamental in many sorts of
complex software systems, including adaptive, and self-organising
ones [Bea10]

Space-aware Coordination

In most of the application scenarios where situatedness plays an essential
role, computation and coordination are required to be space aware

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 129 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Situatedness & Awareness I

Requirements

3 spatial situatedness

3 spatial awareness

(of the coordination media)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 130 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Situatedness & Awareness II

Situatedness

A space-aware coordination abstraction should at any time be associated
to an absolute positioning, both physical and virtual

In fact

software abstractions may move along a virtual space – typically, the
network – which is usually discrete

whereas hardware devices move through a physical space, which is
mostly continuous

! However, software abstractions may also be hosted by mobile physical
devices, thus share their motion

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 131 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Situatedness & Awareness III

Awareness

The position of the coordination medium should be available to the
coordination laws it contains in order to make them capable of reasoning
about space — thus, to implement space-aware coordination laws

Also, space has to be embedded into the working cycle of the coordination
medium:

3 a spatial event should be generated within a coordination medium,
conceptually corresponding to changes in space

3 then, such events should be captured by the coordination medium,
and used to activate space-aware coordination laws

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 132 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Space-aware Coordination Medium: Requirements

Situatedness: Requirements

1 Space should intrinsically belong to the ontology of the coordination
medium, in terms of position and motion

2 Both virtual and physical space acceptations should be supported

3 A notion of locality should be made available

Awareness: Requirements

4 A coordination medium should allow coordination policies to talk
about space

5 A coordination medium should be able to capture spatial events, and
to react appropriately

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 133 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

ReSpecT Tuple Centres as Space-aware Media I

Space in medium ontology & working cycle (reqs. 1, 2)
1 Space has to be an integral part of the ontology of a coordination medium

2 Both physical & virtual position & motion have to be explicitly embedded into the
coordination medium working cycle

3 ReSpecT admissible event model is extended to include space —
physical & virtual. For instance, in the case of 〈OpEvent〉:

〈OpStartCause〉 ::= 〈CoordOp〉 , 〈AgentId〉 , 〈TCId〉 , 〈Time〉 , 〈Space:Place〉
〈OpEventCause〉 ::= 〈OpStartCause〉 |

〈LinkOp〉 , 〈TCId〉 , 〈TCId〉 , 〈Time〉 , 〈Space:Place〉

Since every ReSpecT VM executes on a physical (networked)
machinery, making an expression of positioning available. . .

→ . . . at every transition of the ReSpecT VM, physical & virtual
positioning is always available to any ReSpecT computation

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 134 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

ReSpecT Tuple Centres as Space-aware Media II

Locality in ReSpecT (with TuCSoN) (req. 3)
3 A notion of locality should be made available

ReSpecT tuple centres have unique identities within a TuCSoN node

Any 〈CoordOp〉 / 〈LinkOp〉 can refer to a tuple centre identifier,
relying on the local TuCSoN node as the default local (coordination)
space

Adding a node reference to a 〈CoordOp〉 / 〈LinkOp〉 shifts everything
to the global (coordination) space

! This, however, is just a notion of virtual locality

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 135 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

ReSpecT Tuple Centres as Space-aware Media III

Coordination policies: talking about space (req. 4)
4 A coordination medium should allow coordination policies to talk about space

3 ReSpecT observation predicates are extended with physical & virtual
space:

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= . . . | place(〈Space:Place〉) | . . .

3 Three ReSpecT guard predicates are introduced:

〈GuardPredicate〉 ::= . . . | at(〈Space:Place〉) | near(〈Space:Place〉 , 〈Radius〉) | . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 136 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

ReSpecT Tuple Centres as Space-aware Media IV

Capturing spatial events (req. 5)
5 A coordination medium should be able to capture spatial events, and to react appropriately

3 ReSpecT admissible event model is extended to include spatial events

〈TCEvent〉 ::= 〈OpEvent〉 | 〈TEvent〉 | 〈SEvent〉 | . . .
〈SEvent〉 ::= 〈SStartCause〉 , 〈SEventCause〉 , 〈SResult〉 ,

〈Time〉 , 〈Space:Place〉
〈SStartCause〉 ::= 〈SOp〉 ,space, 〈TCId〉
〈SEventCause〉 ::= 〈SStartCause〉

〈SOp〉 ::= from(〈Space:Place〉) | to(〈Space:Place〉)
〈SResult〉 ::= 〈SOp〉 , . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 137 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

ReSpecT Tuple Centres as Space-aware Media V

Capturing spatial events (req. 5 – contd.)

3 Correspondingly, ReSpecT event descriptor is extended, too

〈Event〉 ::= 〈Predicate〉 (〈Tuple〉) | time(〈Time〉) |
from(〈Space:Place〉) | to(〈Space:Place〉) | . . .

thus making it possible to specify reactions to the occurrence of
spatial events

reaction(from(@S,?P), Guard, Body).

reaction(to(@S,?P), Guard, Body).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 138 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Sorts of Space

It should be noted that the tuple centre position P can be specified as
either

S = ph its absolute physical position

S = ip its IP number

S = dns its domain name

S = map its geographical location — as typically defined by mapping
services like Google Maps

S = org its organisational position — that is, a location within an
application-defined virtual topology

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 139 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Space-aware Middleware: TuCSoN on Android I

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 140 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Space-aware Middleware: TuCSoN on Android II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 141 / 223

Tuple-based Coordination of Situated Systems Coordination in the Spatio-Temporal Fabric

Space-aware Middleware: TuCSoN on Android III

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 142 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 143 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Situatedness & Coordination

Situatedness means, essentially, strict coupling with the environment

technically, the ability to properly perceive and react to changes in the
environment — possibly, affecting it in turn

One of the most critical issues in distributed systems

! conceptual clash (w.r.t. autonomy) between pro-activeness in process
behaviour and reactivity w.r.t. environment change

Still a critical issue for artificial intelligence & robotics [Suc87]

What about coordination?

Essentially, situatedness concerns interaction between processes and the
environment

⇒ thus, situatedness can be conceived as a coordination problem

? how to handle and govern interaction between pro-active processes and
an ever-changing environment?

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 144 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Situating ReSpecT

Situating ReSpecT

Situating the ReSpecT language basically means making ReSpecT
capable of capturing environment events, and expressing general
MAS-environment interactions [CO09]

3 ReSpecT captures, reacts to, and observes general environment events

3 ReSpecT can explicitly interact with (affect) the environment

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 145 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

ReSpecT Tuple Centres as Environment-aware Media I

Coordination policies: talking about environment
1 A coordination medium should allow coordination policies to talk about environment

3 ReSpecT observation predicates are extended with the environment:

〈ObservationPredicate〉 ::= 〈EventView〉_〈EventInformation〉
〈EventView〉 ::= current | event | start

〈EventInformation〉 ::= . . . | env(〈Key〉 , 〈Value〉)

3 Two ReSpecT guard predicates are introduced:

〈GuardPredicate〉 ::= . . . | from_env | to_env

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 146 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

ReSpecT Tuple Centres as Environment-aware Media II

Capturing general environment events
2 A coordination medium should be able to capture environment events, and to react

appropriately

3 The ReSpecT admissible event model is extended to include
environment events

〈TCEvent〉 ::= 〈OpEvent〉 | 〈TEvent〉 | 〈SEvent〉 | 〈EEvent〉 . . .
〈EEvent〉 ::= 〈EStartCause〉 , 〈EEventCause〉 , 〈EResult〉 ,

〈Time〉 , 〈Space:Place〉
〈EStartCause〉 ::= 〈EOp〉 , 〈EResId〉 , 〈TCId〉

〈EDirectCause〉 ::= 〈EStartCause〉
〈EOp〉 ::= env(〈Key〉 , 〈Value〉)

〈EResult〉 ::= 〈EOp〉 , . . .

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 147 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

ReSpecT Tuple Centres as Environment-aware Media III

Capturing general environment events (contd.)

3 Correspondingly, ReSpecT event descriptor is extended, too

〈Event〉 ::= 〈Predicate〉 (〈Tuple〉) | time(〈Time〉) |
from(〈Place〉) | to(〈Place〉) |
env(〈Key〉 , 〈Value〉)

making it possible to specify and associate reactions to the
occurrence of environment events

reaction(env(?Key,?Value), Guard, Body).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 148 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Transducers as Environment Mediators I

Source and target of a tuple centre event can be any external
resource

⇒ a suitable identification scheme – both at the syntax and at the
infrastructure level – is introduced for environmental resources

3 The ReSpecT language is extended to express explicit manipulation of
environmental resources
⇒ the body of a ReSpecT reaction can contain a situation predicate of

the form

3 〈EResId〉 ? get(〈Key〉,〈Value〉)
enabling a tuple centre to get properties of environmental resources

3 〈EResId〉 ? set(〈Key〉,〈Value〉)
enabling a tuple centre to set properties of environmental resources

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 149 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Transducers as Environment Mediators II

Specific environment events have to be translated into well-formed
ReSpecT tuple centre events

! this should be done at the infrastructure level, through a
general-purpose schema that could be specialised according to the
nature of any specific resource

Transducers

A TuCSoN transducer is a component able to bring
environment-generated events to a ReSpecT tuple centre (and back),
suitably translated according to the general ReSpecT event model

each transducer is specialised according to the specific portion of the
environment it is in charge of handling — typically, the specific
resource it is aimed at handling, like a temperature sensor, or a heater

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 150 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Sensor / Actuator Transducer Role I

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 151 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Sensor / Actuator Transducer Role II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 152 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Sensor / Actuator Transducer Role III

1 After event dispatching, the tuple centre target of the operation reacts by
triggering the ReSpecT reaction in annotation 1.1.1 (2.1.1), which generates
a situated event (step 1.1.2 / 2.1.2, respectively) aimed at executing a
situation operation (getEnv(temp, T) / getEnv(temp, T)) on the probe
(sensor / actuator)

2 The transducer associated to the tuple centre and responsible for the target
probe intercepts such an event and takes care of actually executing the
operation on the probe (message 1.1.2.1 / 2.1.2.1)

3 The sensor probe reply (message 1.1.2.2 / 2.1.2.2) generates a sequence of
events propagation terminating in the response to the original coordination
operation issued by the agent (message 1.1.2.3.2.1 / 2.1.2.3.2.1)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 153 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Sensor / Actuator Transducer Role IV

Supporting Situatedness

TuCSoN transducers play a central role in supporting distribution and
uncoupling of agents and probes within the MAS, while TuCSoN tuple
centres and the ReSpecT language are fundamental to support both
situatedness and objective coordination [Sch01, OO03]

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 154 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Environment Engineering in TuCSoN: Overview I

1 Implement probes — sensors and actuators. Typically, this does not
require implementing, e.g., software drivers for the probe: designers
can simply wrap existing drivers in a Java class implementing the
ISimpleProbe interface, then interact with TuCSoN transducers

2 Implement transducers associated to probes by extending the
TuCSoN AbstractTransducer class

3 Configure the transducer manager, responsible for probes and
transducers association and lifecycle management

4 Program tuple centres using ReSpecT implementing the coordination
policies that, along with TuCSoN agents, embed the application logic

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 155 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Environment Engineering in TuCSoN: Overview II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 156 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Environment Engineering in TuCSoN: Overview III

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 157 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Environment Engineering in TuCSoN: Overview IV

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 158 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

TuCSoN-ReSpecT Situated Architecture I

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 159 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

TuCSoN-ReSpecT Situated Architecture II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 160 / 223

Tuple-based Coordination of Situated Systems Coordination in the Computational / Physical Environment

Example & Further References

Let’s try

Check out example Thermostat in package
alice.tucson.examples.situatedness

More on transducers & situatedness

Papers
http://link.springer.com/chapter/10.1007/978-3-319-11692-1_9

http://ceur-ws.org/Vol-1260/paper11.pdf

How-to
http://apice.unibo.it/xwiki/bin/download/TuCSoN/Documents/situatednesspdf.pdf

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 161 / 223

http://link.springer.com/chapter/10.1007/978-3-319-11692-1_9
http://ceur-ws.org/Vol-1260/paper11.pdf
http://apice.unibo.it/xwiki/bin/download/TuCSoN/Documents/situatednesspdf.pdf

Tuple-based Coordination of Stochastic Systems

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 162 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 163 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Don’t Care Non-determinism

A foremost feature of computational models for open, adaptive and self-*
systems is non-determinism.

The Linda approach

Linda features don’t know non-determinism handled with a don’t care
approach:

don’t know which tuple among the matching ones is retrieved by a getter
operation (in, rd) can be neither specified nor predicted

don’t care nonetheless, the coordinated system is designed so as to keep
on working whichever is the matching tuple returned

This is not the case, however, in many of today adaptive and
self-organising systems, where processes may need to implement stochastic
behaviours like “most of the time do this”.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 164 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Definition I

Uniform coordination primitives [GVCO07] are required to inject
probability within coordination, thus to obtain stochastic behaviours
in coordinated systems [Omi12b]

Uniform primitives replace the don’t know non-determinism of
Linda-like primitives with a uniform probabilistic non-determinism

⇒ so, the tuple returned by a uniform primitive is still chosen
non-deterministically among all the tuples matching the template

⇒ however, the choice is now performed with a uniform distribution

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 165 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Definition II

Situation & prediction

Uniform primitives replace don’t know non-determinism with probabilistic
non-determinism to

3 situate a primitive invocation in space

⇒ uniform getter primitives return matching tuples based on the other tuples in
the space—so, their behaviour is context aware

3 predict its behaviour in time

⇒ sequences of uniform getter operations tend to globally exhibit a uniform
distribution over time

! Uniform primitives are the “basic mechanisms enabling self-organising
coordination”, that is, a minimal construct able (alone) to impact the
observable properties of a coordinated system.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 166 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Definition III

The TuCSoN coordination language provides the following 6 uniform
coordination primitives

urd, uin

urdp, uinp

uno, unop

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 167 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Usage I

How do you roll a dice in Java?
(just think about it)

How do you roll a dice in Linda?
(run the example code as it is)

How do you roll a dice with uniform primitives?
(run the example code toggling comments on lines 146-147)

Let’s try!

Check out DicePlayer class in package alice.tucson.examples.uniform.dice

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 168 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Usage II

How do you guarantee fairness of tasks distribution in Java?
(just think about it)

How do you guarantee fairness of tasks distribution in Linda?
(run the example code as it is)

How do guarantee fairness of tasks distribution with uniform
primitives?
(run the example code toggling comments on lines 115-116)

Let’s try!

Check out “Load Balancing” example in package
alice.tucson.examples.uniform.loadBalancing — use TuCSoN Inspector
tool

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 169 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Uniform Primitives: Usage III

How do you inject a controlled bias in a random-based behaviour in
Java?
(just think about it)

How do you do so in Linda?
(just think about it)

How do you do so with uniform primitives?
(run the example code)

Let’s try!

Check out LaunchSwarmsScenario class in package
alice.tucson.examples.uniform.swarms.launchers

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 170 / 223

Tuple-based Coordination of Stochastic Systems Uniform Primitives

Further References

Paper

http://scs.org/documents/Simulation/2_MarianiOmicini.pdf

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 171 / 223

http://scs.org/documents/Simulation/2_MarianiOmicini.pdf

TuCSoN: Advanced

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 172 / 223

TuCSoN: Advanced Model & Language

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 173 / 223

TuCSoN: Advanced Model & Language

Bulk Primitives

Bulk coordination primitives provide efficiency gains when dealing
with multiple tuples, allowing usage of a single coordination operation
to return the whole set of tuples matching a given template [Row96]

! In case no matching tuples are found, they successfully complete
anyway, returning an empty list of tuples

The TuCSoN coordination language provides the following 4 bulk
coordination primitives:

out all puts the given (Prolog) list of tuples in the target tuple
centre

rd all reads all the tuples matching the given template from
the target tuple centre

in all withdraws all the tuples matching the given template
from the target tuple centre

no all checks absence of tuples matching the given template in
the target tuple centre

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 174 / 223

TuCSoN: Advanced Model & Language

Bulk Primitives: Example

Let’s try!

Check out “Master-Workers” example in package
alice.tucson.examples.masterWorkers.bulk

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 175 / 223

TuCSoN: Advanced Model & Language

The spawn Primitive

To delegate computational activities related to coordination to the
coordination medium itself, TuCSoN provides the spawn primitive —
similar to Linda eval

Semantics

spawn activates a parallel computational activity to be carried out
asynchronously w.r.t. the caller

Execution of spawn is local to the tuple centre where it is invoked,
and so are its results

correspondingly, the code implementing the spawned computation must
be locally available — no code mobility
the spawned computation can execute (a subset of) TuCSoN
coordination primitives only locally — no remote operations

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 176 / 223

TuCSoN: Advanced Model & Language

spawn Primitive: Syntax I

General syntax

spawn has basicallya two parameters:

activity — a ground tuple indicating either

the tuProlog theory implementing the activity, along
with the goal to trigger resolution—e.g.,
solve(’path/to/Prolog/Theory.pl’, goal)

the Java class implementing the activity—e.g.,
exec(’list.of.packages.Class.class ’)

tuple centre — a ground tuple identifying the tuple centre in charge
of spawn execution—thus, where the activity will take
place

If using tuProlog API, this suffices. . .

aSee next slide :)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 177 / 223

TuCSoN: Advanced Model & Language

spawn Primitive: Syntax II

Java-specific syntax

. . . if using Java API, a third parameter is instead necessary, which is
either

listener — the listener object
TucsonOperationCompletionListener to notify upon
spawn completion—in case of an asynchronous
invocation

timeout — the long value determining the maximum waiting
time for completion (in milliseconds)—in case of a
synchronous call

In either case, spawn execution is still a separate, parallel computation

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 178 / 223

TuCSoN: Advanced Model & Language

spawn Primitive: Example

Let’s try!

Check out “Spawned Workers” example in package
alice.tucson.examples.spawnedWorkers

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 179 / 223

TuCSoN: Advanced Advanced Features

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 180 / 223

TuCSoN: Advanced Advanced Features

Asynchronous Operation Invocation I

Coordination operations may be invoked in two modes

synchronous — blocking the caller agent whenever the invoked
operation gets suspended

asynchronous — preserving agents’ own autonomy, by decoupling the
agent control flow from the coordination operation
control flow

3 Asynchronous mode is supported by the AsynchOpsHelper TuCSoN
component in package alice.tucson.asynchSupport, which then keeps
track of pending and completed operations on agents’ behalf

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 181 / 223

TuCSoN: Advanced Advanced Features

Asynchronous Operation Invocation II

The API exposed by AsynchOpsHelper consists of

enqueue(AbstractTucsonAction,TucsonOperationCompletionListener): boolean —
adds an operation to the queue of pending operations, given
the listener component to notify upon its completion

getPendingOps(): SearchableOpsQueue — gets the queue of pending
operations, that is, a thread-safe queue providing a
getMatchingOps(...) method to filter on operations type —
e.g., in, rd, etc.

getCompletedOps(): CompletedOpsQueue — gets the queue of completed
operations, that is, a thread-safe queue providing methods to
filter on operations features (type, outcome) — e.g.,
successful operations, failed operations

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 182 / 223

TuCSoN: Advanced Advanced Features

Asynchronous Operation Invocation III

shutdownGracefully(): void — requests soft shutdown of the helper, that is,
shutdown waits for pending operations to complete

shutdownNow(): void — requests hard shutdown of the helper, that is,
shutdown happens as soon as the currently executing
operation completes — other pending operations are
discarded

Further Reference

Details can be found in “Asynchronous Operation Invocation in TuCSoN”
how-to at http://apice.unibo.it/xwiki/bin/view/TuCSoN/Documents

Let’s try!

Check out example PrimeCalculationLauncher in package
alice.tucson.examples.asynchAPI

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 183 / 223

http://apice.unibo.it/xwiki/bin/view/TuCSoN/Documents

TuCSoN: Advanced Advanced Features

Persistency & Recovery I

3 TuCSoN supports persistency of both the ordinary tuple space and
the specification tuple space

⇒ this means it is possible to move the content of a tuple centre from
volatile memory to persistent storage

To do so, an XML file is created upon request, storing a snapshot of
the tuple centre content – “frozen” at the exact moment when
persistency is enabled – as well as all the updates occurring
afterwards — until persistency is disabled

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 184 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery II

The XML file is created within the persistent/ folder in the directory
where TuCSoN has been installed

The XML file is named according to the following scheme
tc tcname at netid at portno yyyy-mm-dd hh.mm.ss , where

tcname is the name of the tuple centre made persistent

netid is the IP address of the TuCSoN node hosting the tuple centre made
persistent

portno is the TCP port number of the TuCSoN node hosting the tuple
centre made persistent

yyyy-mm-dd is the “year-month-day” date when the persistency file has been
created

hh.mm.ss is the “hours.minutes.seconds” time when the persistency file has
been created

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 185 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery III

Within the persistency file, persistent information is encoded in XML
as follows:

first line is the XML header, declaring XML version, encoding, etc.
root element is the <persistency> node, with no attributes
its first children is node <snapshot>, storing the content of the tuple
centre when persistency was enabled, with attributes

tc, a String storing the id of the tuple centre persistency refers to

time, a String storing the timestamp when the snapshot was last
updated (in the same format as previous slide)

its second children is node <updates>, storing the updates occurred
afterwards, with attributes

time, a String storing the timestamp when the last update was
recorder (in the same format as previous slide)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 186 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery IV

Node <snapshot> has three children nodes:

<tuples>, storing the ordinary tuples between children nodes <tuple>

</tuple>, with no attributes
<specTuples>, storing the specification tuples between children nodes
<specTuple> </specTuple>, with no attributes
<predicates>, storing the Prolog predicates (supporting specification
tuples) between children nodes <predicate> </predicate>, with no
attributes

Node <updates> has only one type of children node, <update>,
storing the ordinary tuple, specification tuple or predicate the update
refers to, with attributes to distinguish the kind of update recorded
(all Strings):

action, recording if the update is an addition, deletion or a clean

(removing all the “subjects” of the action)
subject, recording if the update refers to a tuple, a specTuple or a
predicate

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 187 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery V

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 188 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery VI

The purpose of TuCSoN persistency feature is that of supporting a
basic level of fault-tolerance

⇒ in fact, once the content of a tuple centre is on persistent storage, it
can be retrieved anytime and restored

3 thus, in case of, e.g., a TuCSoN node crashes, it is possible to restart it
and recover the content of the persistent tuple centres it hosted

3 Recovery of a persistent tuple centre is automatic in TuCSoN

whenever a TuCSoN node is installed in a directory, on boot it seeks
such directory for the persistent/ folder and recovers all the tuple
centres found

Whenever recovering a persistent tuple centre from its XML file,
persistency is re-enabled on that tuple centre as soon as the recovery
process ends

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 189 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery VII

Enabling/disabling persistency is as simple as putting/removing a
well-defined tuple in the special TuCSoN tuple centre called ‘$ORG’:
cmd(enable persistency([tcid])), where tcid is the id of the tuple
centre whose persistency feature should be enabled

As soon as persistency is enabled, the persistency XML file is created
and the <snapshot> node written; then, the <updates> node opened,
ready to record updates

As soon as persistency is disabled, the <updates> node is closed and
timestamped; then, the persistency file is closed and timestamped too

Testing if a tuple centre is persistent is as simple as testing it for
presence of tuple is persistent, which is automatically added as
soon as persistency is enabled and automatically removed when
disabled

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 190 / 223

TuCSoN: Advanced Advanced Features

Persistency & Recovery VIII

Let’s try!

Check out example PersistencyTester in package
alice.tucson.examples.persistency

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 191 / 223

TuCSoN: Advanced Advanced Features

RBAC in TuCSoN

Role-Based Access Control (RBAC) models8 integrate organisation
and security, by assigning roles to processes, and by ruling the
distributed access to resources

3 TuCSoN implements RBAC-MAS [ORV05b], a version of RBAC
where organisation and security issues are handled in a uniform way
as coordination issues

⇒ a special tuple centre (called $ORG) contains the dynamic rules of
RBAC in TuCSoN

8http://csrc.nist.gov/groups/SNS/rbac/
Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 192 / 223

http://csrc.nist.gov/groups/SNS/rbac/

TuCSoN: Advanced Advanced Features

RBAC API I

Interface RBACStructure

implementation class TucsonRBACStructure

package alice.tucson.rbac

models a RBAC organisation within TuCSoN

It includes

a set of roles, as instances of class TucsonRole (interface Role)
a set of policies, as instances of class TucsonPolicy (interface
Policy)
a set of authorised agents, as instances of class
TucsonAutorisedAgent (interface AuthorisedAgent)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 193 / 223

TuCSoN: Advanced Advanced Features

RBAC API II

Class TucsonRole includes, besides its name and description:

the policy it adheres to
the agent class associated to the role, allowing activation of the role
only for those agents belonging to such class

Class TucsonPolicy includes, besides its name:

a set of permissions, as instances of class TucsonPermission

(interface Permission)

Class TucsonPermission, currently, simply represents the name of a
TuCSoN primitive, to model the fact that the associated policy allows
agents with the associated role to request TuCSoN operations
involving that primitive

Class TucsonAutorisedAgent models a recognised TuCSoN agent,
that is, an agent who performed a successful login into
RBAC-TuCSoN; as such, it includes the agent class the logged agents
belongs to, its (encrypted) username and (encrypted) password

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 194 / 223

TuCSoN: Advanced Advanced Features

RBAC API III

Further reference

Other RBAC-related properties belonging to the TuCSoN node – hence to
TucsonNodeService class – can be configured — see “RBAC in TuCSoN”
how-to at http://apice.unibo.it/xwiki/bin/view/TuCSoN/Documents

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 195 / 223

http://apice.unibo.it/xwiki/bin/view/TuCSoN/Documents

TuCSoN: Advanced Advanced Features

RBAC API IV

To participate a TuCSoN-RBAC organisation, agents need to
1 acquire a meta-ACC
2 activate a role to acquire an ACC

Step 1 involves class TucsonMetaACC, within package
alice.tucson.api:

Step 2 involves the NegotiationACC, which lets TuCSoN “clients”
acquire an ACC, by playing RBAC roles, enabling restricted
interaction with TuCSoN coordination services

3 the released ACC is equipped with a built-in filter allowing only
admissible operations according to the agent’s role

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 196 / 223

TuCSoN: Advanced Advanced Features

RBAC API V

playRole(String, Long): EnhancedACC — attempts to play the given role

playRoleWithPermissions(List<String>, Long): EnhancedACC — attempts to
play a role given a set of desired permissions. The
principle according to which a role is selected is the
least privilege: among the roles enabling all desired
permissions, the one giving the least permissions is
selected—if no suitable role is found, no ACC is released

Let’s try!

Check out example RBACLauncher in package alice.tucson.examples.rbac

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 197 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 198 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

TuCSoN4JADE

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 199 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

TuCSoN4Jason

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 200 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

Context

In objective coordination, coordination-related concerns are extracted from
agents to be embodied within dedicated abstractions offering coordination
as a service [VO06]

In subjective coordination instead, coordination issues are directly tackled by

individual agents themselves

Objective & Subjective Coordination [OO03]

Objective and subjective coordination thus constitute two complementary
approaches, both essential in MAS design and development [ROD03],
hence requiring a suitable integration

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 201 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

Motivation

Successful integration depends on the technology level, that is, on the
mechanisms provided by the agent frameworks to be integrated

In particular, it depends on the model of autonomy promoted by the specific

agent platform, and by its relationship with the model of coordination

adopted by the specific (objective) coordination framework

Hindering Autonomy

Any integration effort not taking into account such two aspects is likely to
hinder agent autonomy by (unintentionally) creating artificial dependencies
between the subjective and the objective stances on coordination

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 202 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

The Issue of Autonomy I

Model of Autonomy

A model defining (i) how agents behave as individual entities, (ii) how
they relate to each other as social entities, as well as (iii) how the two
things coexist

Model of Coordination

A model defining the semantics of the admissible interactions between
agents in a MAS, in particular, w.r.t. their effects on the agent autonomy
(e.g., control flow)

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 203 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

The Issue of Autonomy II

JADE Model of Autonomy

Behaviours for individual tasks

Asynchronous messages for subjective coordination

The “block()-then-resume” pattern to reconcile individual and social
attitudes

Jason Model of Autonomy

Plans/intentions for individual tasks

Asynchronous message passing for subjective coordination

Intention suspension to reconcile individual and social attitudes

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 204 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

The Issue of Autonomy III

TuCSoN Model of Coordination

By decoupling invocation semantics from the operation semantics,
synchronous calls are always consequence of the agent own deliberation
process

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 205 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

The Issue of Autonomy IV

Figure: The “alt”-labelled frame is the equivalent of JADE blockingReceive()

programming pattern in TuCSoN4JADE.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 206 / 223

TuCSoN: Advanced Agent Development Frameworks Integration

The Issue of Autonomy V

. . . Jason?

The whole approach is the same, obviously the abstractions, mechanisms,
and architecture of the solution differs

Further reference

Paper:

http://link.springer.com/10.1007/978-3-319-10422-5_9

Codebase:

https://bitbucket.org/smariani/tucson4jade

https://bitbucket.org/smariani/tucson4jason

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 207 / 223

http://link.springer.com/10.1007/978-3-319-10422-5_9
https://bitbucket.org/smariani/tucson4jade
https://bitbucket.org/smariani/tucson4jason

ReSpecT: Advanced

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 208 / 223

ReSpecT: Advanced Towards ReSpecTX

Outline
1 Interaction & Coordination in Distributed Systems

On the Interactive Nature of Distributed Systems
On the Role and Nature of Coordination Models

2 Tuple-based Coordination of Distributed Systems
On Tuple-based Coordination Models
Beyond Tuple Spaces: Tuple Centres

3 Coordination with TuCSoN: Basics
Model & Language
Technology Overview
Core API Overview

4 Coordination with ReSpecT: Basics
Model & Virtual Machine
Language Overview
Core API Overview

5 Tuple-based Coordination of Situated Systems
Coordination in the Spatio-Temporal Fabric
Coordination in the Computational / Physical Environment

6 Tuple-based Coordination of Stochastic Systems
Uniform Primitives

7 TuCSoN: Advanced
Model & Language
Advanced Features
Agent Development Frameworks Integration

8 ReSpecT: Advanced
Towards ReSpecTX

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 209 / 223

ReSpecT: Advanced Towards ReSpecTX

A Novel, Higher Level Language I

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 210 / 223

ReSpecT: Advanced Towards ReSpecTX

A Novel, Higher Level Language II

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 211 / 223

ReSpecT: Advanced Towards ReSpecTX

A Novel, Higher Level Language III

Features

Useless variables warning — replaceable by anonymous variable “ ”

Modularity of ReSpecT reactions — specifications may include
modules

Existence and absence guards — rd, in, no can be used as guards,
with and without side effects

Some syntactic sugar and a more imperative programming style

A few semantic checks: redundant and conflicting guards errors, same
“signature” warning, etc.

Automatic generation of (editable) ReSpecT specifications

Reference

https://bitbucket.org/smariani/respectx

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 212 / 223

https://bitbucket.org/smariani/respectx

References

References I

Jacob Beal.
A basis set of operators for space-time computations.
In Proceedings of the 2010 Fourth IEEE International Conference on Self-Adaptive and
Self-Organizing Systems Workshop (SASOW 2010), pages 91–97, Washington, DC, USA,
2010. IEEE Computer Society.

Paolo Ciancarini.
Coordination models and languages as software integrators.
ACM Computing Surveys, 28(2):300–302, June 1996.

Matteo Casadei and Andrea Omicini.
Situated tuple centres in ReSpecT.
In Sung Y. Shin, Sascha Ossowski, Ronaldo Menezes, and Mirko Viroli, editors, 24th
Annual ACM Symposium on Applied Computing (SAC 2009), volume III, pages
1361–1368, Honolulu, Hawai’i, USA, 8–12 March 2009. ACM.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 213 / 223

References

References II

Mehdi Dastani, Farhad Arbab, and Frank S. de Boer.
Coordination and composition in multi-agent systems.
In Frank Dignum, Virginia Dignum, Sven Koenig, Sarit Kraus, Munindar P. Singh, and
Michael J. Wooldridge, editors, 4rd International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2005), pages 439–446, Utrecht, The Netherlands,
25–29 July 2005. ACM.

Enrico Denti, Andrea Omicini, and Alessandro Ricci.
tuProlog: A light-weight Prolog for Internet applications and infrastructures.
In I.V. Ramakrishnan, editor, Practical Aspects of Declarative Languages, volume 1990 of
Lecture Notes in Computer Science, pages 184–198. Springer Berlin Heidelberg, 2001.
3rd International Symposium (PADL 2001), Las Vegas, NV, USA, 11–12 March 2001.
Proceedings.

Martin Fredriksson and Rune Gustavsson.
Online engineering and open computational systems.
In Federico Bergenti, Marie-Pierre Gleizes, and Franco Zambonelli, editors, Methodologies
and Software Engineering for Agent Systems: The Agent-Oriented Software Engineering
Handbook, volume 11 of Multiagent Systems, Artificial Societies, and Simulated
Organization, pages 377–388. Kluwer Academic Publishers, 2004.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 214 / 223

References

References III

David Gelernter and Nicholas Carriero.
Coordination languages and their significance.
Communications of the ACM, 35(2):97–107, February 1992.

David Gelernter.
Generative communication in Linda.
ACM Transactions on Programming Languages and Systems, 7(1):80–112, January 1985.

Dina Q. Goldin, Scott A. Smolka, and Peter Wegner, editors.
Interactive Computation: The New Paradigm.
Springer, September 2006.

Luca Gardelli, Mirko Viroli, Matteo Casadei, and Andrea Omicini.
Designing self-organising MAS environments: The collective sort case.
In Danny Weyns, H. Van Dyke Parunak, and Fabien Michel, editors, Environments for
MultiAgent Systems III, volume 4389 of LNAI, pages 254–271. Springer, May 2007.
3rd International Workshop (E4MAS 2006), Hakodate, Japan, 8 May 2006. Selected
Revised and Invited Papers.

John W. Lloyd.
Foundations of Logic Programming.
Springer, 1st edition, 1984.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 215 / 223

References

References IV

Andrea Omicini and Enrico Denti.
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294, November 2001.

Andrea Omicini and Enrico Denti.
From tuple spaces to tuple centres.
Science of Computer Programming, 41(3):277–294, November 2001.

Andrea Omicini.
Towards a notion of agent coordination context.
In Dan C. Marinescu and Craig Lee, editors, Process Coordination and Ubiquitous
Computing, chapter 12, pages 187–200. CRC Press, Boca Raton, FL, USA, October 2002.

Andrea Omicini.
Formal ReSpecT in the A&A perspective.
Electronic Notes in Theoretical Computer Science, 175(2):97–117, June 2007.
5th International Workshop on Foundations of Coordination Languages and Software
Architectures (FOCLASA’06), CONCUR’06, Bonn, Germany, 31 August 2006.
Post-proceedings.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 216 / 223

References

References V

Andrea Omicini.
Agents writing on walls: Cognitive stigmergy and beyond.
In Fabio Paglieri, Luca Tummolini, Rino Falcone, and Maria Miceli, editors, The Goals of
Cognition. Essays in Honor of Cristiano Castelfranchi, volume 20 of Tributes, chapter 29,
pages 543–556. College Publications, London, December 2012.

Andrea Omicini.
Nature-inspired coordination for complex distributed systems.
In Intelligent Distributed Computing VI, Studies in Computational Intelligence, Calabria,
Italy, 24-26 September 2012. Springer.
6th International Symposium on Intelligent Distributed Computing (IDC 2012). Invited
paper.

Andrea Omicini and Sascha Ossowski.
Objective versus subjective coordination in the engineering of agent systems.
In Matthias Klusch, Sonia Bergamaschi, Peter Edwards, and Paolo Petta, editors,
Intelligent Information Agents: An AgentLink Perspective, volume 2586 of LNAI:
State-of-the-Art Survey, pages 179–202. Springer, 2003.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 217 / 223

References

References VI

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
An algebraic approach for modelling organisation, roles and contexts in MAS.
Applicable Algebra in Engineering, Communication and Computing, 16(2-3):151–178,
August 2005.
Special Issue: Process Algebras and Multi-Agent Systems.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
RBAC for organisation and security in an agent coordination infrastructure.
Electronic Notes in Theoretical Computer Science, 128(5):65–85, 3 May 2005.
2nd International Workshop on Security Issues in Coordination Models, Languages and
Systems (SecCo’04), 30 August 2004. Proceedings.

Andrea Omicini, Alessandro Ricci, and Mirko Viroli.
Timed environment for Web agents.
Web Intelligence and Agent Systems, 5(2):161–175, August 2007.

Andrea Omicini and Franco Zambonelli.
Coordination of mobile information agents in TuCSoN.
Internet Research, 8(5):400–413, December 1998.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 218 / 223

References

References VII

Andrea Omicini and Franco Zambonelli.
Coordination for Internet application development.
Autonomous Agents and Multi-Agent Systems, 2(3):251–269, September 1999.
Special Issue: Coordination Mechanisms for Web Agents.

George A. Papadopoulos and Farhad Arbab.
Coordination models and languages.
In Marvin V. Zelkowitz, editor, The Engineering of Large Systems, volume 46 of Advances
in Computers, pages 329–400. Academic Press, 1998.

Alessandro Ricci, Andrea Omicini, and Enrico Denti.
Activity Theory as a framework for MAS coordination.
In Paolo Petta, Robert Tolksdorf, and Franco Zambonelli, editors, Engineering Societies in
the Agents World III, volume 2577 of LNCS, pages 96–110. Springer, April 2003.

Antony Ian Taylor Rowstron.
Bulk Primitives in Linda Run-Time Systems.
PhD thesis, The University of York, 1996.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 219 / 223

References

References VIII

Michael Schumacher.
Objective Coordination in Multi-Agent System Engineering. Design and Implementation,
volume 2039 of LNCS.
Springer, April 2001.

Lucy A. Suchman.
Plans and Situated Actions: The Problem of Human-Machine Communication.
Cambridge University Press, New York, NYU, USA, 1987.

Mirko Viroli and Andrea Omicini.
Coordination as a service.
Fundamenta Informaticae, 73(4):507–534, 2006.
Special Issue: Best papers of FOCLASA 2002.

Peter Wegner and Dina Goldin.
Computation beyond Turing machines.
Communications of the ACM, 46(4):100–102, April 2003.

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 220 / 223

References

References IX

Franco Zambonelli, Gabriella Castelli, Laura Ferrari, Marco Mamei, Alberto Rosi, Giovanna
Di Marzo Serugendo, Matteo Risoldi, Akla-Esso Tchao, Simon Dobson, Graeme
Stevenson, Yuan Ye, Elena Nardini, Andrea Omicini, Sara Montagna, Mirko Viroli, Alois
Ferscha, Sascha Maschek, and Bernhard Wally.
Self-aware pervasive service ecosystems.
Procedia Computer Science, 7:197–199, December 2011.
Proceedings of the 2nd European Future Technologies Conference and Exhibition 2011
(FET 11).

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 221 / 223

Outline

1 Interaction & Coordination in Distributed Systems

2 Tuple-based Coordination of Distributed Systems

3 Coordination with TuCSoN: Basics

4 Coordination with ReSpecT: Basics

5 Tuple-based Coordination of Situated Systems

6 Tuple-based Coordination of Stochastic Systems

7 TuCSoN: Advanced

8 ReSpecT: Advanced

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 222 / 223

Advanced Coordination Techniques
Experiments with TuCSoN and ReSpecT

Stefano Mariani Andrea Omicini
{s.mariani, andrea.omicini}@unibo.it

Dipartimento di Informatica – Scienza e Ingegneria (DISI)
Alma Mater Studiorum – Università di Bologna

Faculté d’informatique – Université de Namur
Thursday, April 28th, 2016

Mariani & Omicini (DISI, Univ. Bologna) Coordination with TuCSoN Namur, 28/04/2016 223 / 223

	Interaction & Coordination in Distributed Systems
	On the Interactive Nature of Distributed Systems
	On the Role and Nature of Coordination Models

	Tuple-based Coordination of Distributed Systems
	On Tuple-based Coordination Models
	Beyond Tuple Spaces: Tuple Centres

	Coordination with TuCSoN: Basics
	Model & Language
	Technology Overview
	Core API Overview

	Coordination with ReSpecT: Basics
	Model & Virtual Machine
	Language Overview
	Core API Overview

	Tuple-based Coordination of Situated Systems
	Coordination in the Spatio-Temporal Fabric
	Coordination in the Computational / Physical Environment

	Tuple-based Coordination of Stochastic Systems
	Uniform Primitives

	TuCSoN: Advanced
	Model & Language
	Advanced Features
	Agent Development Frameworks Integration

	ReSpecT: Advanced
	Towards ReSpecTX

