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Context, Motivation & Goals

Context

One of the foremost issues in the engineering of self-organising
systems is the so-called “local-to-global” issue

Local-to-global

How to “link” the local mechanisms, through which the components of
the system interact, to the emergent, global behaviour, exhibited by the
system as a whole [Beal and Bachrach, 2006]

Existing approaches to alleviate such issue are mostly based on:

simulation [Gardelli et al., 2006]
parameter tuning [Gardelli et al., 2009]
(approximate) model checking [Casadei and Viroli, 2013]
“bio-inspired design patterns” [Fernandez-Marquez et al., 2012]
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Context, Motivation & Goals

Motivation

Nevertheless, these approaches may be not enough—especially if used
separately:

simulation may not be able to accurately reproduce real world
contingencies
parameter tuning may lead to sub-optimal settings
model checking may be impractical for the complexity of the problem
at hand
design patterns give no guarantees about the quality of the solution
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Context, Motivation & Goals

Goals

For these reasons, we propose an integrated approach:
1 rely on design patterns — design the local mechanisms by

implementing self-organisation primitives as artificial chemical reactions
2 go beyond the law of mass action [Cardelli, 2008] — engineer custom

kinetic rates for such reactions
3 “simulate-then-tune” — adjust the dynamics of the (artificial) chemical

system obtained to achieve the emergent, global behaviour desired

Also, we remark the benefits of using custom kinetic rates in place of
the law of mass action [Mariani, 2013]
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Background

Self-organisation “primitives” I

Bio-inspired design patterns are decomposable into “primitive”
mechanisms [Fernandez-Marquez et al., 2012], that is, into
self-organisation primitives

A survey of state-of-art literature (see the paper for citations) led to
the following “core” set of primitives—the local mechanisms:

decay destroys information as time passes
feed increases information “relevance” (e.g. quantity) according to

some kind of feedback mechanism
activation/inhibition changes information “status” (e.g. attributes, values,

etc.) depending on external stimuli
aggregation fuses information together (e.g. filtering, merging,

composing, transforming, etc.)
diffusion moves information within a topology (e.g. migration,

replication, etc.)

repulsion/attraction drifts apart / approaches information
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Background

Self-organisation “primitives” II

! Diffusion and repulsion/attraction are left out from simulations
because they involve spatial aspects which, although can be simulated
with our chosen tool, BioPEPA1, visualisation of their emergent
behaviour is best done with tools like NetLogo2

Doing so is part of our ongoing work. . .

1Home page at http://homepages.inf.ed.ac.uk/jeh/Bio-PEPA/biopepa.html
2Home page at http://ccl.northwestern.edu/netlogo/index.shtml
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Background

Chemical Reactions Simulation

BioPEPA [Ciocchetta and Hillston, 2009] is a language and tool for
the simulation of biochemical processes

As regards our goals, its most appealing features are:

support to custom kinetic laws by designing functional rate expressions
support to stoichiometry (“how many” molecules of a given kind
participate) and role played by the species (reactant, product, enzyme,
etc.) in a given reaction
roots in CTMC semantics [Hermanns, 2002]

Rate expressions are mathematical functions involving reactants’
concentrations and supporting:

mathematical operators, e.g., exp and log functions
built-in common kinetic laws, e.g., the law of mass action, denoted
with the keyword fMA

time dependency through variable time, increasing according to the
current simulation time step
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The Power of Custom Kinetic Rates

Experimental Setting

We model self-organisation primitives as artificial chemical reactions

We then encode them in the BioPEPA language, to simulate the
emergent, global behaviour achievable

While doing so, we engineer custom kinetic rates in different ways,
comparing BioPEPA plots to investigate how a change in local
mechanisms affect the global behaviour

Technical Details

Gillespie simulation algorithm [Gillespie, 1977]

x-axis plots the time steps of the simulation

y -axis plots reactants concentration expressed as units of “molecules”

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 12 / 52



The Power of Custom Kinetic Rates Decay

Outline

1 Context, Motivation & Goals

2 Background

3 The Power of Custom Kinetic Rates
Decay
Feed
Activation/Inhibition
Aggregation

4 Conclusion & Ongoing Work

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 13 / 52



The Power of Custom Kinetic Rates Decay

Usual fMA-based Rate I

Artificial Chemical Decay

data
rdecay−−−→ ⊥

BioPEPA Encoding

1 DECAY_CONSTANT = 0.5;

2 r_decay = [fMA(DECAY_CONSTANT )]; // kinetic rate

3 data = (r_decay , 1) <<; // chemical reaction

Species data participates as a reactant (<<)—thus being consumed

It participates with stoichiometry 1—thus one unit of data is involved in
r decay chemical reaction

Reaction rate (r decay) follows the usual law of mass action (fMA)

[Cardelli, 2008]
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The Power of Custom Kinetic Rates Decay

Usual fMA-based Rate II

Figure 1 : Rate constant from 0.5 (left plot) to 0.005 (right plot), thus time from 100 steps to
1, 000. Data quantity from 1, 000 units (right/left plots) to 10, 000 (bottom plot), but decay
time remained the same (still 1, 000).
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The Power of Custom Kinetic Rates Decay

Usual fMA-based Rate III

“Fast-then-slow” decay—the emergent, global behaviour

Independent of the quantity of data to decay—compare right plot to
bottom plot

Timing can be tuned by changing the rate constant—compare left
plot to right plot
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The Power of Custom Kinetic Rates Decay

fMA Limitations

What if such trend is not the best to suit the application needs?

What if the self-organising system to be deployed should display a
different trend, e.g. an opposite “slow-then-fast” decay? Possibly,
also sensitive to the quantity of information to decay?

Flexibility

In an information management scenario, for instance, novel data can be
produced/consumed anytime and when a given piece of information may
become interesting is unknown. There, shifting to a “slow-then-fast” trend
is better.
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The Power of Custom Kinetic Rates Decay

Custom Rate I

BioPEPA Encoding

1 DECAY_CONSTANT = 0.5;

2 r_decay = [fMA(DECAY_CONSTANT) + H(data) * time/data];

3 data = (r_decay , 1) <<;

time is the BioPEPA variable tracking simulation time steps

H(·) is the Heaviside step function3—useful to avoid meaningless negative

rates

3
http://en.wikipedia.org/wiki/Heaviside_step_function
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The Power of Custom Kinetic Rates Decay

Custom Rate II

Figure 2 : Rate constant from 0.5 (left plot) to 0.005 (right plot), thus time from ≈ 700 to
over 1, 000. Data quantity from 1, 000 (left/right plots) to 10, 000 (bottom plot), time too
increased proportionally from 1000 to over 10, 000 time steps.
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The Power of Custom Kinetic Rates Decay

Custom Rate III

Opposite, “slow-then-fast” trend

Decreasing rate constant still leads to a delay in decay
completion—compare left plot to right plot

Changing the quantity of data to decay now affects decay time
proportionally—compare right plot to bottom plot
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The Power of Custom Kinetic Rates Decay

“Local-to-Global”

This dramatic behaviour twist is due to the new factors we added to the
kinetic rate expression: direct proportionality to time and inverse
proportionality to data

Notice to keep independency of data quantity, we can simply remove factor
1

data
from the rate expression.

Mitigating the issue

Adding/removing factors to the local mechanism (the “law” manipulating
each data item) leads to a well-defined change in the emergent, global
behaviour achieved (the evolution of the whole population of data items),
greatly enhancing flexibility & controllability.
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The Power of Custom Kinetic Rates Feed

Usual fMA-based Rate

Artificial Chemical Feed

data + food
rfeed−−→ data + data

BioPEPA Encoding

1 FEED_CONSTANT = 0.5;

2 r_feed = [fMA(FEED_CONSTANT )];

3 // same rate name ==> same chemical reaction

4 data = (r_feed, 1) >>; // product (1 unit produced)

5 food = (r_feed, 1) <<; // reactant (1 unit consumed)

“Fast-then-slow” feed

A lower rate leads to a slower feeding process

A higher quantity of data does not affect time taken to complete the feeding

process
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The Power of Custom Kinetic Rates Feed

Custom Rate

BioPEPA Encoding

1 FEED_CONSTANT = 0.5;

2 r_feed = [fMA(FEED_CONSTANT) + H(food) * time/food];

3 // same rate name ==> same chemical reaction

4 data = (r_feed, 1) >>; // product (1 unit produced)

5 food = (r_feed, 1) <<; // reactant (1 unit consumed)

Opposite, “slow-then-fast” trend

As for the fMA-only rate, lower rate leads to a slower feeding process

As for the fMA-only rate, higher quantity of data does not affect time taken

to complete the feeding process
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The Power of Custom Kinetic Rates Feed

fMA Vs. Custom Rate

Figure 3 : fMA-only rate (left plot) is sensitive to rate constant change and to data quantity
likewise decay; custom kinetic rate (right and bottom plots) too (bottom plot has twice the data
of right plot, but saturation time is the same), due to its inverse proportionality to food, not
data. Changing food affects saturation time of both rate expressions.

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 25 / 52



The Power of Custom Kinetic Rates Activation/Inhibition

Outline

1 Context, Motivation & Goals

2 Background

3 The Power of Custom Kinetic Rates
Decay
Feed
Activation/Inhibition
Aggregation

4 Conclusion & Ongoing Work

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 26 / 52



The Power of Custom Kinetic Rates Activation/Inhibition

Usual fMA-based Rate I

Artificial Chemical Activation/Inhibition

data + on
ractivation−−−−−→ on + data on

data + off
rinhibition−−−−→ off + data off

BioPEPA Encoding

1 ACTIVATION_CONSTANT = 0.5;

2 r_activation = [fMA (ACTIVATION_CONSTANT) ];

3 data = (r_activation, 1) <<;

4 on = (r_activation, 1) (+); // activator enzyme (not consumed)

5 data_on = (r_activation, 1) >>;

6 // inhibition ==> replace (+) with (-)

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 27 / 52



The Power of Custom Kinetic Rates Activation/Inhibition

Usual fMA-based Rate II

Figure 4 : In right plot activator enzyme quantity (on) is twice that of left plot, causing a
faster activation process (from time 6 to time 3). In bottom plot data quantity is twice that of
other plots, but activation time is the same as that of left plot, thus here data quantity does
not affect timing. Acting on rate constant speeds up or slows down the process as usual.
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The Power of Custom Kinetic Rates Activation/Inhibition

Usual fMA-based Rate III

“Fast-then-slow” activation

Dependent on the quantity of activator enzyme—compare right plot to
bottom plot

Independent of the quantity of reactant to activate—compare left plot to
bottom plot

Timing can be tuned by changing the rate constant

Species’ Role

Notice we are comparing food with data, not with on. Although food

and on play a similar “role” in the artificial chemical reaction –
“activators” – they have a completely different “chemical nature”: food is
a reactant, whereas on is an enzyme.
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The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate I

BioPEPA Encoding

1 ACTIVATION_CONSTANT = 0.5;

2 r_activation = [fMA (ACTIVATION_CONSTANT) +

3 H(data) * time/data_on ];

4 data = (r_activation, 1) <<;

5 on = (r_activation, 1) (+); // activator enzyme (not consumed)

6 data_on = (r_activation, 1) >>;

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 30 / 52



The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate II

Figure 5 : Increasing the on enzyme quantity no longer affects the activation process time
(right plot has twice on than left plot, but “crossing” time step is still ≈ 600), whereas
increasing data to activate does (bottom plot has twice data than left plot, thus time taken
until crossing point increased to ≈ 1050). Acting on the rate constant speeds up or slows down
the process as usual.S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 31 / 52



The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate III

Different, “more linear” trend

Dependency on the quantity of the activator enzyme (on) is lost

Direct proportionality to the quantity of data to undergo the activation

process

More Flexibility & Controllability

Notice not only the emergent, global behaviour changed, but also
sensitivity to the parameters involved in kinetic rate computation

Also, we put in a kinetic rate computation a product of the artificial
chemical reaction in process, which is something impossible to find in
(real-world) “chemistry”
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The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate IV

BioPEPA Encoding

1 ACTIVATION_CONSTANT = 0.5;

2 r_activation = [fMA (ACTIVATION_CONSTANT) +

3 H(data) * time/data];

4 data = (r_activation, 1) <<;

5 on = (r_activation, 1) (+); // activator enzyme (not consumed)

6 data_on = (r_activation, 1) >>;
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The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate V

Figure 6 : Increasing on enzyme quantity does not affect the activation process time (right
plot has twice than left plot, but crossing time step is still ≈ 560), whereas increasing data to
activate does (bottom plot has twice than left plot, thus time taken until crossing point
increased to over 1100). Acting on rate constant speeds/slows up/down the process as usual.
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The Power of Custom Kinetic Rates Activation/Inhibition

Custom Rate VI

Opposite, “slow-then-fast” activation

Independent of the enzyme quantity—same as Figure 5

Directly proportional to data quantity—same as Figure 5

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 35 / 52



The Power of Custom Kinetic Rates Aggregation

Outline

1 Context, Motivation & Goals

2 Background

3 The Power of Custom Kinetic Rates
Decay
Feed
Activation/Inhibition
Aggregation

4 Conclusion & Ongoing Work

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 36 / 52



The Power of Custom Kinetic Rates Aggregation

Usual fMA-based Rate I

Artificial Chemical Aggregation

part1 + part2 raggregation−−−−−→ whole

BioPEPA Encoding

1 AGGREGATION_CONSTANT = 0.0005;

2 r_aggregation = [fMA (AGGREGATION_CONSTANT) ];

3 part1 = (r_aggregation, 1) <<;

4 part2 = (r_aggregation, 1) <<;

5 whole = (r_aggregation, 1) >>;
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The Power of Custom Kinetic Rates Aggregation

Usual fMA-based Rate II

Figure 7 : In right plot reactants part1/part2 are half w.r.t. left plot, causing a slower
aggregation process (step 2 in left plot, step 4 in right plot). In bottom plot instead, their
quantity is twice that of the first (2000 units), thus aggregation time faster (half time w.r.t. left
plot). Acting on the rate constant speeds/slows up/down the process as usual.
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The Power of Custom Kinetic Rates Aggregation

Usual fMA-based Rate III

“Fast-then-slow” aggregation

Increasing (decreasing) part1/part2 decreases (increases) time taken
to aggregate parts into whole—opposite w.r.t. Figure 5
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The Power of Custom Kinetic Rates Aggregation

Custom Rate I

BioPEPA Encoding

1 AGGREGATION_CONSTANT = 0.0005;

2 r_aggregation = [fMA (AGGREGATION_CONSTANT) +

3 H(part1) * H(part2) * time/whole ];

4 part1 = (r_aggregation, 1) <<;

5 part2 = (r_aggregation, 1) <<;

6 whole = (r_aggregation, 1) >>;
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The Power of Custom Kinetic Rates Aggregation

Custom Rate II

Figure 8 : Now increasing reactants quantity (bottom plot has twice “parts” than right plot)
increases time taken to complete aggregation (from 550 time steps in right plot, to 1050 in
bottom plot). Instead, acting on the rate constant speeds/slows up/down the process as usual
(“crossing point” from ≈ 390 in left plot, to 550 in right plot).

S. Mariani (DISI, Alma Mater) Custom Kinetic Rates FoCAS, 8/9/2014 41 / 52



The Power of Custom Kinetic Rates Aggregation

Custom Rate III

BioPEPA Encoding

1 AGGREGATION_CONSTANT = 0.0005;

2 r_aggregation = [fMA (AGGREGATION_CONSTANT) +

3 H(part1) * H(part2) * time/part1 ];

4 part1 = (r_aggregation, 1) <<;

5 part2 = (r_aggregation, 1) <<;

6 whole = (r_aggregation, 1) >>;
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The Power of Custom Kinetic Rates Aggregation

Custom Rate IV

Figure 9 : Parameters of the local mechanism (the aggregation reaction) have the same effect
on the emergent, self-organising behaviour achieved as described for previous custom rate. In
particular, right plot has a slower rate than left plot, thus time scale almost doubled, and
bottom plot has twice parts than right plot, thus, again, time scale almost doubled.
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The Power of Custom Kinetic Rates Aggregation

Custom Rate V

The exhibited trends and sensitivity to local mechanisms’ parameters are
mostly the same as that of custom activation

This should not surprise the reader: being the “role” played by whole in

aggregation primitive the same as that played by data on in activation –

that is, products of the reaction – as well as the role played by part1 and

part2 in aggregation the same as that played by data in activation – that

is, reactants – we can expect for them both the same global behaviour to

emerge and the same sensitivity to parameters

Predictability

This is another nice property of custom kinetic rates in artificial chemical
reactions, making predictions about the global, emergent behaviour
achievable easier to do.
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Conclusion & Ongoing Work

Conclusion

Novel approach in dealing with the “local-to-global” issue in
engineering self-organising systems:

1 model self-organisation primitives as artificial chemical reactions
2 design custom kinetic rates
3 adjust rates’ parameters according to the emergent, global behaviour

desired

Factors chosen for custom kinetic rate expressions have a
well-defined, controllable effect on the global behaviour achieved

This is made possible by adoption of the chemical reaction metaphor
while implement self-organisation primitives, and helps alleviating the
“local-to-global” issue, ultimately leading to a better engineering of
self-organising behaviours
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Conclusion & Ongoing Work

Ongoing Work

Extending the pool of self-organisation primitives considered to those
implying spatial aspects—e.g. diffusion and repulsion/attraction

Considering also self-organisation “design patterns”, that is, more
complex behaviours obtainable by composition of self-organisation
primitives [Fernandez-Marquez et al., 2012]
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Conclusion & Ongoing Work

Thanks

Thank you for your attention :)

(Friendly) Questions are welcome ;)
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