14th International Symposium on Intelligent Distributed Computing Sep 16-18, 2021, Online

Combining Coordination Strategies for Autonomous Vehicles in Intersection Networks

Marco Gambelli[†], Stefano Mariani[†], Giacomo Cabri[†]*, and Franco Zambonelli[†]

⁺University of Modena and Reggio Emilia, Italy*Laboratorio CINI Smart Cities & Communities, Italy

stefano.mariani@unimore.it

Goals & motivations

- Autonomous and connected vehicles will soon* relieve us from driving duties
- Most of current research deals with
 - enabling **individual** vehicles to hit the roads safely
 - coordinate vehicles movements at **isolated** intersections
- We investigate the *impact of different coordination* strategies on a intersections network
 - crucial during transition with mixed human-driven and self-driving vehicles

*perhaps

Outline

1. Problem definition

- a. intersections management
- b. coordination strategies
- 2. Scenarios simulation
 - a. tech. stack
 - b. implemented strategies
- 3. Results
 - a. combined strategies
 - b. progressive deployment

Problem definition

• Intersection management

concerns the need of coordinating vehicles while concurrently crossing intersections

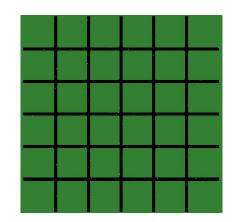
- competitive problem
- junction as shared resource
- Solutions need coordination strategies
 - safety: no collisions
 - liveness: all vehicles eventually cross
 - **quality**: min. delay / max. throughput / ...

Coordination strategies

- Traffic light
 - o safe
 - inefficient (red light on empty junction)

Precedence

- unsafe (delegates to vehicles)
- efficient (vehicles can cross simultaneously)


• Reservation-based

- centralised intersection manager (IM)
- vehicles request right of way

Future

- <u>IM decides</u>
- Negotiation-based
 - centralised/decentralised
 - collaborative/competitive (e.g. ContractNet vs. auctions)
 - vehicles can influence decision

Scenarios Simulation

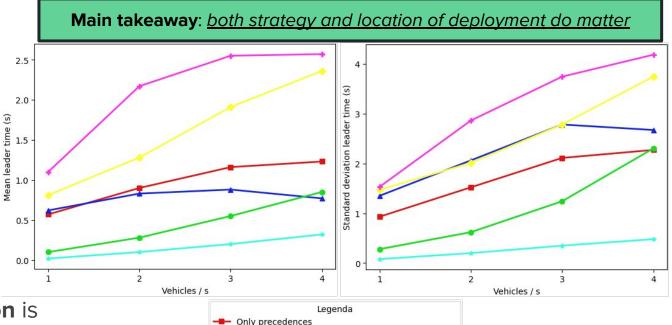
- **SUMO (Simulation of Urban MObility)** used for implementation
 - o scalable
 - custom vehicle behaviour
 - intersection networks
 - **Python** bindings (*TraCl* package)
- Scenarios configuration
 - **5x5** intersection network
 - 3 lanes per direction (turn left, go straight, turn right)
- Simulations params:
 - vehicles/s
 - o # runs
 - RNG seedc

Implementation

 Precedence already in SUMO

- Reservation-based
 - based on Dresner & Stone* seminal algorithm
 - based on occupancy matrix
 - **FCFS** for colliding vehicles

* Kurt M. Dresner, Peter Stone: A Multiagent Approach to Autonomous Intersection Management J. Artif, Intell. Res. 31: 591-656 (2008) ^A Giacomo Cabri, Luca Gherardini, Manuela Montangero: Auction-based Crossings Management GOODTECHS 2019: 183-188


Auction-based

- based on recent research^
- colliding vehicles participate
- queue leaders do bids
- following vehicles sponsor bids
- 1st variant: only highest wins
- \circ 2nd variant: bids are ranked

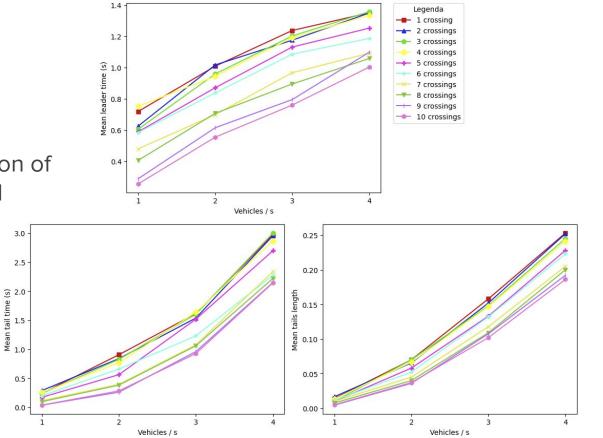
Results

- Mean time spent as leader of queue
- Different combinations of strategies

---- External reservations, internal precedences

Only reservations

External precedences, internal reservations External competitive auctions, internal precedences

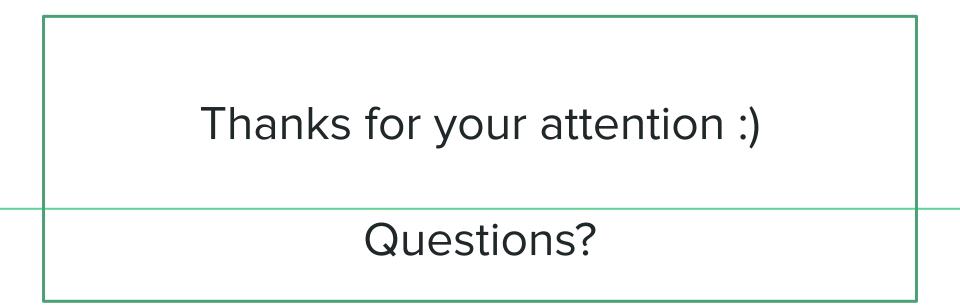

External precedences, internal competitive auctions

- Best combination is
 - reservation-based on inner intersections
 - precedence on outer intersections

- Same metric
- Different coverage of reservation-based deployment
- Improvement/degradation of performance is graceful

Main takeaway:

<u>also the</u> <u>number of deployments</u> <u>do matter</u>


Conclusion

- Reservation-based strategies work best even in combination with others
- 2. **3 factors** contribute to performance
 - a. coordination strategy
 - b. # of deployments
 - c. location of deployments

Outlook

- Model human-driven vehicles, too
- Consider changing coordination strategy at run-time

14th International Symposium on Intelligent Distributed Computing Sep 16-18, 2021, Online

stefano.mariani@unimore.it