CoMoRea 2021 – PerCom – March 2021

DEVELOPING A "SENSE OF AGENCY" IN IOT SYSTEMS: PRELIMINARY EXPERIENCES IN A SMART HOME SCENARIO

Marco Lippi, Stefano Mariani, Franco Zambonelli Università di Modena e Reggio Emilia

What is the Sense of Agency?

- Learning the effects of own actions in the surrounding environment
 - "Playing" with hands (effectors) to see what happens
 - Learning simple tasks
 - Developing a sense of self
- Takes place by intrinsically motivated exploration

The Sense of Agency Ladder

At the individual level

Perception

• Only observing variables \rightarrow not of interest here

Exploration

- Do actions and observe variables
- Planning
 - Given a Goal (set of variables), Select right actions

At the collective level

Recognition of non-self

What variables are not under my control (other agents)

Strategic thinking

Act based on what others are doing

Multiagent interactions

Act based on agreement among multiple agents

The Model

- Given an agent X
 - Can observe a set of n environmental variables $v = (v_1, v_2, v_n)$
 - Can select a set of actions $a = (a_1, a_2, \dots, a_m, null)$
- Start selecting (randomly, or combinatorially) actions
- Observe the effects on variables
 - Build a model of actions-effects: $(a_i, \mathbf{v}_t) \rightarrow \mathbf{v}_{t+1}$
 - Typically probabilistic: $P(\mathbf{v}_{t+1}|a_i, \mathbf{v}_t)$
 - The result is a Bayesian network with embedded causal relations (due to the possibility of controlling causes, i.e., actions *a*)
- Learn to achieve goals
 - Given \boldsymbol{v}_t and a goal \boldsymbol{v}_G
 - Select appropriate set of actions (a_i, a_j, ..., a_k)

This is Not Reinforcement Learning

- Reinforcement Learning
 - Driven by rewards \rightarrow goal-oriented
 - The goal is more on exploitation then exploration
 - Learn a policy $\pi: \mathbf{v} \rightarrow a$ without necessarily building a model of the world

Sense of agency

- Driven by curiosity \rightarrow intrinsic rewards
- The goal is exploration → understanding how the world works and how
 I can affect it
- It eventually builds a model of the world $\mu:(a_i, v_t) \rightarrow v_{t+1}$
- Autonomous mental development, self vs non-self

Related Work

- Curriculum-based Reinforcement Learning
 - Learn starting from simple tasks in simple environments
 - To exploit the cumulated knowledge in increasingly complex environments
- Auto-curricula
 - Multiple agents in the environment
 - Contributing to autonomously increase the complexity of the environment
- Learning based on intrinsic motivation
 - Very similar to our approach
 - But we do intend to build an explicit (and explainable) causal model of the world
- Causal reasoning
 - Learning causal models of the world \rightarrow not necessarily agent-oriented
 - We focus on agents and the sense of agency

The Smart Home Prototype

- Cardboard model of two adjacent rooms
- Two Arduinos, one for each room
- Lights
- Light sensors
- Actuator for curtains

Smart Home Scheme

Experiments: Single Room (1)

- Assume the curtain between the two rooms is closed
- Each room can be dealt with independently as a single room
- If the light bulbs are not actuable
- The room autonomically discovers how to actuate curtains to achieve darkness

Experiments: Single Room (2)

- If the light bulbs are actuable
- The room autonomically discover that is can achieve darkness by acting either on light bulbs or on curtains

Experiments: Single Room (3)

- If there is a windows letting sunlight in
- The room discovers that it can achieve darkness only probabilistically
- Or, by placing an external light sensor, that it cannot achieve darkness in the presence of external light

Experiments: Two Rooms (1)

- The two rooms are connected by a window, with a curtain
- The rooms both discover that they can achieve darkness only
 - · When the window curtain is closed OR,
 - · When the lights bulbs in the other room are off

Experiments: Two Rooms (2)

- Eventually
- The two rooms discover that they can achieve their own individual goals (darkness or light) by agreeing on closing the window curtain

Conclusions

- The proposed approach seems promising
 - Early signs of the development of the "sense of agency"
 - Early capabilities of achieving simple goals
 - Early capabilities of emergent multiagent cooperation
- Future work
 - Experiment with more complex scenarios
 - Let agents test with "counterfactuals" to improve learning
 - Moving from simple goals to complex goal plannings